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CPIC UPDATES 

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published 

in full on www.cpicpgx.org. Information will be reviewed and updated periodically on 

that website.  

 

LITERATURE REVIEW 

For TPMT, we searched the PubMed database from 1966 to October 2012 for the original 

guideline and then Oct 1, 2012 to June 6, 2017 for this guideline update for keywords 

((TPMT) AND ((TPMT) AND thiopurine) AND ((TPMT) AND azathioprine) AND 

((TPMT) AND mercaptopurine) AND ((TPMT) AND thioguanine) for the contribution 

TPMT genotype and phenotype had on predicting a thiopurine-related adverse drug event 

(ADE) or outcome. Using these search terms, 139 publications were identified and 

following application of the inclusion criteria 133 were reviewed and included in the 

evidence table (Table S1). 

 

For NUDT15, we searched the PubMed database (no start date to May 25, 2017) for 

keywords (NUDT15) for the contribution NUDT15 genotype had on predicting a 

thiopurine-related adverse drug event (ADE) or outcome. Using these search terms, 41 

publications were identified and following application of the inclusion criteria, 21 were 

reviewed and included in the evidence table (Tables S2). 

 

To construct a TPMT minor allele frequency table based on ethnicity, PubMed was 

searched up to 1/31/2018.  Studies were considered for inclusion if: (1) the ethnicity of 

the population was clearly indicated and (2) allele frequencies for TPMT genotypes were 

reported.  Additionally, allele frequencies reported in the gnomAD browser 

(http://gnomad.broadinstitute.org/ - exomes and genomes) and ensembl 

(grch37.ensembl.org - exomes or genomes) were also included. Many TPMT allele 

frequencies could not be found through a PubMed search, so the gnomAD frequencies 

were the only frequencies available for many alleles.  The same approach was used for 

NUDT15 allele frequencies.  Very little allele frequency information could be found 
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through a PubMed search, so gnomAD and ensembl allele frequencies were used for 

several population groups.   

 

GENETIC TEST INTERPRETATION 

The haplotype, or star (*) allele name, is determined by a specific SNP or a combination 

of SNPs that are interrogated in the genotyping analysis.  The genotypes that constitute 

the haplotype, or star (*) alleles for TPMT and NUDT15, and the rs# for each of the 

specific genomic nucleotide alterations that define the alleles (if available), are described 

in the TPMT Allele Definition Table and NUDT15 Allele Definition Table found at 

https://cpicpgx.org/guidelines/guideline-for-thiopurines-and-tpmt/. 

 

For TPMT, the genotype results are generally reported as a diplotype, which includes one 

maternal and one paternal star allele (e.g., *1/*3A).    The TPMT activity associated with 

each of the common * alleles is summarized in TPMT Allele Functionality Table ((1, 

2); https://cpicpgx.org/guidelines/guideline-for-thiopurines-and-tpmt/). The most 

common no function allele among Caucasians for TPMT is designated as *3A; other 

alleles predominate in other ethnic/ancestral groups (see TPMT Frequency Table; 

https://cpicpgx.org/guidelines/guideline-for-thiopurines-and-tpmt (1, 2). The *3A allele 

designation for TPMT is assigned based on the SNP genotypes and the very strong 

linkage disequilibrium that has been established between two of the most common 

inactivating TPMT SNPs: Ala154Thr (rs1800460; c.460G>A) and Tyr240Cys 

(rs1142345; c.719A>G); when the rare genotype is present at these two SNP positions in 

the heterozygous state, the assumption is that the rare genotypes are in cis (on the same 

allele) and the diplotype call is *1/*3A. However, each of these SNPs have been observed 

to exist on their own allele (*3B and *3C, respectively) in some populations (TPMT 

Frequency Table; https://cpicpgx.org/guidelines/guideline-for-thiopurines-and-tpmt/))(1, 

2) with the rare genotypes present on their own; if these rare genotypes are present on 

opposite alleles in the same individual, the diplotype call should be that of a compound 

heterozygote diplotype (*3B/*3C)—a call consistent with homozygous TPMT 

deficiency. If one assumes that the frequency of the *3B-defining variant in Caucasians is 

0.0063, and of the *3C-defining variant is 0.004205, the probability of finding such a 
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compound heterozygote deficient diplotype is estimated 1 in 515,861 Caucasian 

individuals. It is controversial whether an individual with the *3B/*3C genotype has ever 

been identified (3, 4), but the *3B allele is very rare, and given the frequency of *3C, a 

very large sample size would be needed to have a high probability of detecting the 

*3B/*3C diplotype. Phenotypic tests could distinguish between the *1/*3A and the 

*3B/*3C diplotypes and should be employed if a homozygous deficient genotype is 

suspected. One of the two phenotyping tests (measuring erythrocyte TPMT activity or 

thiopurine metabolites after thiopurine dosing) can differentiate a *1/*3A diplotype 

(TPMT intermediate metabolizer) from a very rare *3B/*3C diplotype (TPMT poor 

metabolizer). TPMT activity would be extremely low in the latter case and intermediate 

in the former case; erythrocyte thiopurine metabolites would indicate a low but detectable 

MeTIMP/TGN ratio for a *1/*3A diplotype and the *3B/*3C diplotype would be 

consistent with undetectable MeTIMP (or MeMPN) levels. 

 

For NUDT15, there have been nine * alleles (haplotypes) reported thus far based on 

seven known variants (2 indels and 5 SNPs). The p.R139C (rs116855232; c.415C>T) 

variant is the most common polymorphism and can be observed either alone (*3 allele) or 

together with the p.V18_V19dup (rs869320766; c.50_55dup) variant as a distinctive 

haplotype (*2 allele). No significant linkage disequilibrium is present amongst other 

NUDT15 variants and all other *alleles are defined by a single variant. The 

p.V18_V19ins variants can be present without the p.R139C SNP (*6 allele) but is 

exceedingly rare based on the 1000 Genomes data. In East Asians for whom NUDT15 

variants are more common, 6.0% of individuals are heterozygous for both the p.R139C 

and the p. V18_V19insGV variants, of which 5.8% are *1/*2 and 0.2% are *3/*6. 

Therefore, while it is advisable to resolve *1/*2 vs *3/*6 diplotypes, the probability for 

the former is overwhelming. The p.R139H (rs147390019; c.416G>A) variant that defines 

the *4 allele is only one base pair from the p.R139C variant. Thus, genotyping can be 

challenging in patients heterozygous for both variants because of interference between 

the two (e.g., during PCR amplification and/or probe hybridization). However, *3/*4 is 

exceedingly rare (0.01% in East Asians or Hispanics).    
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AVAILABLE GENETIC TEST OPTIONS 

Commercially available genetic testing options change over time. Below is some 

information that may assist in evaluating options. 

 

Desirable characteristics of pharmacogenetic tests, including naming of alleles and test 

report contents, have been extensively reviewed by an international group, including 

CPIC members (5). CPIC recommends that clinical laboratories adhere to these test 

reporting standards. CPIC gene-specific tables (see Allele Definition Table, Allele 

Functionality Table and Frequency Table (https://cpicpgx.org/guidelines/guideline-for-

thiopurines-and-tpmt/)) adhere to these allele nomenclature standards (5). Moreover, the 

Allele Definition, Functionality, and Frequency Tables may be used to assemble lists 

of known functional and actionable pharmacogenetic variants and their population 

frequencies, which may inform decisions as to whether tests are adequately 

comprehensive in interrogations of alleles.  

  

For TPMT, it has been demonstrated that the vast majority of low-activity phenotypes are 

accounted for by the three  SNPs that constitute the *2, *3A, *3B, and *3C alleles, and that 

sequencing yields few new important low-function variants (6, 7). For NUDT15, it is not 

yet clear the extent to which multiple rare variants may account for low NUDT15 activity, 

and thus the need for sequencing-based approaches cannot be ignored.  

 

The Genetic Testing Registry (GTR) provides a central location for voluntary submission 

of genetic test information by providers and is available at 

http://www.ncbi.nlm.nih.gov/gtr/. 

 

Many commercially available tests for TPMT include only *2, *3A, *3B and *3C, 

although the rare *4 allele is also inactivating.  Many methods are available for more 

comprehensive TPMT genotyping of additional alleles (8), and some are being adapted 

for clinical use.  
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There is an increasing demand for NUDT15 tests which are now already available at a 

number of commercial laboratories. The p.R139C (rs116855232) variant is most 

commonly tested but some assays can determine *1-*6 alleles.   

 

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE 

The evidence summarized in Table S1 and S2 is graded using a scale modified slightly 

from Valdes et al. (9) 

High: Evidence includes consistent results from well-designed, well-conducted 

studies. 

Moderate: Evidence is sufficient to determine effects, but the strength of the 

evidence is limited by the number, quality, or consistency of the individual 

studies; generalizability to routine practice; or indirect nature of the evidence. 

Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, 

gaps in the chain of evidence, or lack of information. 

 

STRENGTH OF DOSING RECOMMENDATIONS 

CPIC’s dosing recommendations are based on weighting the evidence from a 

combination of preclinical functional and clinical data (Tables S1 and S2), as well as on 

some existing disease-specific consensus guidelines (10, 11). Some of the factors that are 

taken into account in evaluating the evidence supporting dosage recommendations 

include: in vivo clinical outcome data for thiopurines, in vivo pharmacokinetic and 

pharmacodynamic data for thiopurines, in vitro enzyme activity of expressed wild-type or 

variant-containing TPMT or NUDT15 (with thiopurines or TGTP as substrate, 

respectively), in vitro TPMT enzyme activity from tissues isolated from individuals of 

known TPMT genotypes, in vivo pre-clinical pharmacokinetic and pharmacodynamic 

studies, and in vitro studies of TPMT or NUDT15 protein stability.  

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for just 

three categories for recommendations adopted from the rating scale for evidence-based 

recommendations on the use of antiretroviral agents (12):  
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Strong recommendation for the statement: “The evidence is high quality and the 

desirable effects clearly outweigh the undesirable effects.” 

Moderate recommendation for the statement: “There is a close or uncertain balance” as 

to whether the evidence is high quality and the desirable clearly outweigh the undesirable 

effects. 

Optional recommendation for the statement: The desirable effects are closely balanced 

with undesirable effects, or the evidence is weak or based on extrapolations. There is 

room for differences in opinion as to the need for the recommended course of action. 

No recommendation: There is insufficient evidence, confidence, or agreement to 

provide a recommendation to guide clinical practice at this time. 

 

OTHER CONSIDERATIONS 

Complementary clinical laboratory tests are available to measure thiopurine metabolites 

in erythrocytes: TGNs (for mercaptopurine, azathioprine, and thioguanine) and MeMPNs 

(or MeTIMP) for those on mercaptopurine or azathioprine. These tests can be useful to 

confirm TPMT phenotype and to test for patient adherence with oral medication 

regimens, but the values are dependent upon the prior thiopurine dosing.  TPMT 

phenotype can also be assessed by measuring erythrocyte TPMT activity; however, 

activity measures must be interpreted with caution because TPMT activity increases after 

exposure to thiopurines. Thus, TPMT measured at diagnosis may not reflect TPMT 

activity later in therapy. This is one reason the TPMT genotype is a useful measure, as 

genotype does not change during therapy. Although there may be some settings in which 

aminosalicylates affect TPMT activity, other studies clearly show no in vivo drug 

interactions. (13-17) TPMT may be spuriously altered from baseline if the patient has 

recently received allogeneic erythrocyte transfusions or if the patient has previously 

received an allogeneic hematopoietic stem cell transplant (10, 18-22). Furthermore, 

because TPMT activity is similar to other erythrocyte enzymes that decrease during the 

red cells’ life-span, the erythrocyte TPMT activity in a wild-type patient with bone-

marrow insufficiency (e.g., as is true at diagnosis of ALL) may be within the expected 

range of a healthy TPMT heterozygote patient, and a TPMT heterozygous patient with a 
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rapid red cell turn-over (e.g. as seen during hemolysis) may have erythrocyte TPMT 

activity within the TPMT wild-type range.(23)  

 

Conflicts between phenotype and genotype results (e.g. a low TPMT activity in an 

individual with a wild-type genotype) may be resolved with additional testing. Because 

most commercial genotyping assays test only the three most common inactivating SNPs, 

if a rare inactivating (and untested-for) SNP is present, a spurious wild-type genotype 

assignment could be made although phenotype tests indicate low TPMT activity or low 

MeTIMP/TGN ratio. Another rare possibility would be that two inactivating SNP 

variants are mistakenly assumed to reside on the same allele, when they in fact reside on 

opposite alleles; phenotypic tests can distinguish these two possibilities.  

 

As indicated in the main manuscript, there is a wide variety of starting, target, and usual 

doses of thiopurines for different diseases (24, 25) or for the same disease by different 

groups (25, 26). Patients with an intermediate metabolizer TPMT phenotype will be more 

likely to require a thiopurine dosage decrease if the starting, target, or usual dosage is on 

the higher end of the usual range. Also, as indicated below, heterozygotes are more likely 

to need a decrease of their thiopurines if other concurrent therapy (such as methotrexate) 

has overlapping adverse effects (such as myelosuppression). Some have suggested that 

combining thiopurines with allopurinol minimizes methylated active metabolites (27-30), 

an interaction that will depend upon TPMT phenotype/genotype. 

 

Because clinical assays for TGNs do not distinguish tri- from di- from mono-phosphates, 

TGN levels cannot be used to identify low NUDT15 activity. There is a growing body of 

research data indicating that thioguanine incorporated into blood cell DNA may be an 

indicator of NUDT15 status in patients receiving thiopurines (31), but there are not 

enough data at present to know if this assay will be a useful adjunct it were available in 

the clinic. 
 

One caveat to thiopurine use is that some serious long-term adverse effects (secondary 

tumors) have been associated with defective TPMT activity (19, 32-34) without 
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necessarily causing serious acute myelosuppression; whether capping doses of 

thiopurines in those with a TPMT defect will decrease the risk of the late effect of 

secondary cancer is not known. It should be noted that at least one study did not confirm 

a relationship between TPMT and a higher risk of second tumors (35). Veno-occlusive 

disease and persistent splenomegaly have been associated with low TPMT activity in a 

UKALL trial, although not with TPMT genotype (36, 37), but VOD was not associated 

with TPMT genotype in a CCG trial (38).. Thiopurine-associated pancreatitis has not 

been related to low TPMT activity, and hepatotoxicity (hypertransaminasemia) is more 

common in those with high TPMT activity (39-45).  

 

Hepatic nodular regenerative hyperplasia (NRH) has been reported in patients treated 

with thiopurines for inflammatory bowel disease (IBD) (46, 47); however, only two 

studies reported TPMT genotype (48, 49).  In both studies NRH was observed in patients 

who were heterozygous for the TPMT*3A allele. Further studies are needed to confirm 

the association between NRH and TPMT genotype. 

 

The effects of NUDT15 variants on these long-term side effects of thiopurines are 

currently unknown.   

 

High dose methotrexate is commonly given in combination with 6-mercaptopurine during 

consolidation therapy and re-inductions during maintenance therapy in patients with 

acute lymphoblastic leukemia. Through inhibition of purine de novo synthesis and 

enhancement of 6-mercaptopurine bioavailability, high dose methotrexate increases the 

incorporation of the cytotoxic metabolite of 6-mercaptopurine (6-thioguanine nucleotide) 

into DNA (50, 51).This interaction is enhanced with increasing levels of the methylated 

6-mercaptopurine metabolite, MeTIMP (51). Additionally, the risk of significant bone-

marrow suppression is increased if oral 6-mercaptopurine is co-administered with high 

dose methotrexate (52). Patients who are TPMT or NUDT15 deficient may experience 

life-threatening myelosuppression during combination therapy (53). Thus, reductions in 

the dose of concurrently given 6-mercaptopurine during high dose methotrexate therapy 

can significantly reduce the risk of severe myelotoxicity (50, 54). 
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RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN EHR 

WITH CDS  

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) 

can help guide clinical pharmacogenetics at the point of care (55-59).  See 

https://cpicpgx.org/guidelines/guideline-for-thiopurines-and-tpmt/ for resources to 

support the adoption of CPIC guidelines within an EHR.  Based on the capabilities of 

various EHRs and local preferences, we recognize that approaches may vary across 

organizations. Our intent is to synthesize foundational knowledge that provides a 

common starting point for incorporating the use of TPMT and/or NUDT15 genotype 

results to guide thiopurine dosing and use in an EHR.   

 

Effectively incorporating pharmacogenetic information into an EHR to optimize drug 

therapy should have some key attributes.  Pharmacogenetic results, an interpreted 

phenotype, and a concise interpretation or summary of the result must be documented in 

the EHR (60, 61). To incorporate a phenotype in the EHR in a standardized manner, 

genotype test results provided by the laboratory must be consistently translated into an 

interpreted phenotype (Table 1, main manuscript).  Because clinicians must be able to 

easily find the information, the interpreted phenotype may be documented as a problem 

list entry or in a patient summary section; these phenotypes are best stored in the EHR at 

the “person level” rather than at the date-centric “encounter level”.  Additionally, results 

should be entered as standardized and discrete terms to facilitate using them to provide 

point-of-care CDS (55, 62).  

 

Because pharmacogenetic results have lifetime implications and clinical significance, 

results should be placed into a section of the EHR that is accessible independent of the 

test result date to allow clinicians to quickly find the result at any time after it is initially 

placed in the EHR.  To facilitate this process, CPIC is providing gene-specific 

information figures and tables that include full diplotype to phenotype tables, diagram(s) 

that illustrate how TPMT  and/or NUDT15 pharmacogenetic test results could be entered 

into an EHR, example EHR consultation/genetic test interpretation language and widely 
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used nomenclature systems for genes relevant to the CPIC guideline (see 

https://www.pharmgkb.org/page/tpmtRefMaterials and 

https://www.pharmgkb.org/page/nudt15RefMaterials) (63, 64).  

 

Point-of-care CDS should be designed to effectively notify clinicians of prescribing 

implications at any time after the test result is entered into the EHR. CPIC is also 

providing gene-drug specific tables that provide guidance to achieve these objectives 

with diagrams that illustrate how point-of-care CDS should be entered into the EHR, 

example pre- and post-test alert language, and widely used nomenclature systems for 

drugs relevant to the CPIC guideline (see https://cpicpgx.org/guidelines/guideline-for-

thiopurines-and-tpmt/).  
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FIGURE S1. IDEALIZED DEPICTIONS OF TPMT ACTIVITY IN 

ERYTHROCYTES FROM A NORMAL, HEALTHY, NON-TRANSFUSED 

POPULATION. TPMT activity displays a trimodal frequency distribution (top) that 

corresponds to monogenic inheritance. Activity is generally directly related to TPMT 

protein levels, and inversely related to concentrations of active TGN (thioguanine 

nucleotide) metabolites. 
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TABLE S1. EVIDENCE LINKING TPMT GENOTYPE WITH THIOPURINE PHENOTYPE 

Type of 

experimental 

model (in vitro, 

in vivo, 

preclinical or 

clinical) 

Major findings References Level of 

evidence
a
 

In vitro MP’s catabolism to methylmercaptopurine absent in human 
erythrocytes, lymphocytes, liver, and kidneys from TPMT 
homozygous deficient individuals 

Weinshillboum, et al. (1980) (65) 
Van Loon, et al. (1982) (66) 
Van Loon, et al. (1990) (67) 
Szumlanski, et al. (1992) (68) 
 

High 

In vitro TG’s catabolism to methylthioguanine 
 

Moore, et al. (1958) (69) 
 

High 

In vitro Mechanisms of functional inactivation for TPMT *2, *3A, 
*3B, *3C, *4 demonstrated by expression of specific variant 
alleles  

Tai, et al. (1997) (70) 
Tai, et al. (1999) (71) 
Wang, et al. (2003) (72) 

High 

In vitro Heterologous expression of TPMT catabolizes mercaptopurine 
to methylmercaptopurine, thioguanine to methylthioguanine, 
and TIMP to methylTIMP 

Hill, et al. (1971) (73) 
Krynestki, et al. (2003) (74) 

High 
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In vitro 
 
 
 

TPMT deficiency could lead to chronic exposure to thiopurine 
and could be linked to development of brain cancer 
(astrocytomas). 

Hosni-Ahmed, et al. (2011) (75) Low 

In vitro 
 

TPMT knock-down cells are more sensitive to 6-TG, and in 
some cases 6-MP, than wild type 

Karim, et al. (2013) (76) High 

Preclinical TPMT+/+ mice have higher survival with high doses of 
mercaptopurine but TPMT-/- mice have improved survival 
with lower doses. 

Ramsey, et al. (2014) (77)  High 

Preclinical TPMT knock-out mice have more morbidity and mortality but 
better ALL efficacy from thioguanine and mercaptopurine 
than wild type mice; heterozygotes were at intermediate risk. 

Hartford, et al. (2007) (78) 
Ramsey, et al. (2014) (77) 

High 

Clinical Increased risk of myelosuppression in TPMT heterozygotes 
receiving normal doses of MP or azathioprine 

Lennard, et al. (1987) (79) 
Lennard, et al. (1993) (80) 
Black, et al. (1998) (81) 
McLeod, et al. (1999) (82) 
Relling, et al. (1999) (83) 
Sebbag, et al. (2000) (84) 
Colombel, et al. (2000) (85) 
McBride, et al. (2000) (86) 
Evans, et al. (2001) (87) 
Schwab, et al. (2002) (88) 
Formea, et al. (2004) (89) 
Gearry, et al. (2005) (90) 
Zelinkova, et al. (2006) (91) 

High 
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Hindorf, et al. (2006) (92) 
Karas-Kuzelicki, et al. (2009) (93) 
Booth, et al. (2011) (94) 
Budhiraja, et al. (2011) (95) 
Fangbin, et al. (2012) (96) 
Colleoni, et al. (2013) (97) 
Hlavaty, et al. (2013) (98) 
Zabala, et al. (2013) (99) 
Lee, et al. (2013) (100) 
Ben Salah, et al. (2013) (101) 
Davavala, et al. (2014) (102) 
Carvalho, et al. (2014) (45) 
Boso, et al. (2014) (103) 
Chen, et al. (2014) (104) 
Uchiyama, et al. (2014) (105) 
Kim, et al. (2014) (106) 
Yang, et al. (2014) (107) 
Belen, et al. (2014) (108) 
Liu, et al. (2015) (44) 
El-Rashedy, et al. (2015) (42) 
Liu, et al. (2015) (43) 
Steponaitiene, et al. (2016) (109) 
Lee, et al. (2016) (110) 
Fangbin, et al. (2016) (111) 
Liu, et al. (2016) (112) 
Zhu, et al. (2016) (113) 
Jimenez-Morales, et al. (2016) 
(114) 
Di Salvo, et al. (2016) (115) 
Soler, et al. (2017) (116) 
Kim, et al. (2017) (117) 
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Clinical TPMT genotype correlates with TPMT activity measured by 
biochemical assay (variant genotypes have lower activity in 
general than *1/*1), but activity cannot be explained by 
genotype alone because the *1/*1 and variant (het) activities 
overlap 

Relling, et al. (1999) (83) 
Ansari, et al. (2002) (118) 
Gearry, et al. (2005) (90) 
Schmiegelow, et al. (2009) (119) 
Booth, et al. (2011) (94) 
Fangbin, et al. (2012) (96) 
Wennerstrand, et al. (2013) (120) 
Ben-Salah, et al. (2013) (101) 
Liang, et al. (2013) (121) 
Demlova, et al. (2014) (122) 
Chen, et al. (2014) (104) 
Farfan, et al. (2014) (123) 
Chouchana, et al. (2014) (124) 
Karas-Kuzelicki, et al. (2014) 
(125) 
Coelho, et al. (2016) (126) 
Liu, et al. (2017) (6) 
Tamm, et al. (2017) (7) 

High 

 
Clinical 

TPMT variant genotype is associated with increased TGN 
levels and/or lower MMPN levels 

Lennard, et al. (2013) (127) 
Stocco, et al. (2014) (128) 
Uchiyama, et al. (2014) (105) 
Chouchana, et al. (2014) (124) 
Kim, et al. (2014) (106) 
Lee, et al. (2015) (129) 
Lee, et al. (2015) (130) 
Fangbin, et al. (2016) (111) 

High 

Clinical  TPMT variant genotype associated with incidence of 
gastrointestinal ADRs 

Hlavaty, et al. (2013) (98) 
Ben Salah, et al. (2013) (101) 
Liu, et al. (2015) (44) 
Liu, et al. (2015) (43) 

Weak 
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Clinical  *3C variant is associated with alopecia in patients with 
autoimmune disease (i.e. inflammatory bowel disease and 
lupus)   

Chen, et al. (2014) (104) 
Kim, et al. (2014) (106) 

Moderate 

Clinical TPMT status associated with dose reduction or cessation of 
therapy of AZA or 6MP  

Evans, et al. (1991) (131) 
McLeod, et al. (1993) (132) 
Evans, et al. (2001) (87) 
Kaskas, et al. (2003) (133) 
Dhaliwal, et al. (2012) (134) 
Chisick, et al. (2013) (135) 
Lee, et al. (2013) (100) 
Ben Salah, et al. (2013) (101) 
Farfan, et al. (2014) (123) 
Kim, et al. (2014) (106) 
Yang, et al. (2015) (136) 
Lennard, et al. (2015) (137) 
Tanaka, et al. (2015) (138) 
Kim, et al. (2016) (139) 
Ma, et al. (2016) (140) 
Zgheib, et al. (2017) (141) 
Liu, et al. (2017) (6) 

High 

Clinical TPMT activity is not associated with sinusoidal obstruction 
syndrome 

 

Stoneham, et al. (2003) (37) 
Lennard, et al. (2006) (142) 
Dong, et al. (2010) (39) 
Wray, et al. (2014) (38) 

Weak 

Clinical TPMT variant genotype is NOT associated with greater 
likelihood of event free survival, but studies that adjust dose 
based on TPMT status or tolerance may be unlikely to find 
such associations 

Yang, et al. (2012) (143) 
Levinsen, et al. (2014) (144) 
Lennard, et al. (2015) (137) 
Lennard, et al. (2015) (145) 
Liang, et al. (2016) (146) 
Karol, et al. (2017) (147) 

Moderate 
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Clinical TPMT status associated with development of secondary 
cancer 

Yenson, et al. (2008) (32) 
Stanulla, et al. (2009) (35) 
Levinsen, et al. (2014) (144) 
Lennard, et al. (2015) (137) 
Stensman, et al. (2015) (148) 
Nielsen, et al. (2017) (149) 

Weak 

Clinical TPMT status associated with development of secondary 
cancer 

Dhaliwal, et al. (2012) (134) 
Linga, et al. (2014) (150) 
Levinsen, et al. (2015) (151) 
Hoang, et al. (2015) (152) 
Tanaka, et al. (2015) (138) 
Emmungil, et al. (2015) (153) 
Bermejo San Jose, et al. (2017) 
(154) 

Weak 

Clinical Personalized dose for TPMT variant genotypes significantly 
associated with decreased hematologic ADR risk and 
decreased 6-TGN levels compared with standard doses. 

Coenen, et al. (2015) (155) High 

Clinical The VNTR region in TPMT promoter correlates with TPMT 
expression (not statistically significant). 

Kotur, et al. (2015) (156) Weak 

Clinical TPMT wild-type patients with ALL have higher risk of relapse 
than those with at least one variant TPMT allele, particularly 
in regimens that are primarily antimetabolite-based; wild-type 
patients with IBD have higher risk of treatment failure 

Lennard, et al. (1987) (79) 
Lennard, et al. (1990) (157) 
Ansari, et al. (2002) (118) 
Schmiegelow, et al. (2009) (119) 
 

High  
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Clinical TPMT homozygous deficient individuals have life-threatening 
toxicity (myelosuppression) from normal doses of MP, TG, 
and azathioprine; toxicity can be minimized with substantially 
decreased doses 

Evans, et al. (1991) (131) 
Schutz, et al. (1993) (158) 
McLeod, et al. (1993) (132) 
Lennard, et al. (1993) (80) 
Black, et al. (1998) (81) 
McLeod, et al. (1999) (82) 
Relling, et al. (1999) (83) 
Sebbag, et al. (2000) (84) 
Colombel, et al (2000) (85) 
McBride, et al. (2000) (86) 
Schwab, et al. (2002) (88) 
Kaskas, et al. (2003) (133) 
Gearry, et al. (2005) (90) 
Zelinkova, et al. (2006) (91) 
Hindorf, et al. (2006) (92) 
 

High  

Clinical Increased risk of leukopenia in TPMT heterozygotes and 
homozygotes receiving thiopurines for treatment of chronic 
inflammatory diseases. 

Booth, et al. (2011) (94) High 

Clinical Higher level of residual leukemia in TPMT wild- type patients 
than in heterozygous/homozygous deficient patients with ALL 
after 10 days of fixed- dose TG but not in absence of 
thiopurines 

Stanulla, et al. (2005) (26) High 

Clinical  No change in relapse risk for heterozygous patients with ALL 
who receive MP doses adjusted downward for TPMT 
defective patients 

Relling, et al. (2006) (159) 
Schmiegelow, et al. (2010) (160) 

Moderate 
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Clinical No increase in acute toxicity in heterozygous compared to 
homozygous wild-type patients with ALL who received MP 
doses adjusted downward for TPMT defective patients 

Lennard, et al. (1996) (161) 
Evans, et al. (2001) (87) 
Stocco, et al. (2009) (162) 

High 

Clinical Increased risk of secondary leukemia in those with low TPMT 
activity and in those with high thiopurine active metabolites 

Relling, et al. (1998) (163) 
Relling, et al. (1999) (164) 
Bo, J. et al. (1999) (165) 
Yenson, et al. (2008) (32) 
Schmiegelow, et al. (2009) (166) 
Levinsen, et al. (2014) (144) 
Nielson, et al. (2017) (149) 
 

Moderate 

Clinical TPMT genotyping is useful in predicting myelosuppression 
and likelihood of clinical response to AZA/6-MP in IBD 

Dubinsky, et al. (2000) (167) 
Schwab, et al. (2002) (88) 
Gearry, et al. (2005) (90) 
Hindorf, et al. (2006) (92) 
Zelinkova, et al. (2006) (91) 
Hindorf, et al. (2006) (168) 
Winter, et al. (2007) (169) 
Gardiner, e al. (2008) (170) 
Ansari, et al. (2008) (171) 
Takatsu, et al. (2009) (172) 
Kim, et al. (2010) (173) 

Moderate 

Clinical TPMT genotyping is useful in predicting myelosuppression 
and likelihood of clinical response to AZA in CD 

Lennard, et al. (1989) (174) 
Colombel, et al. (2000) (85) 
Regueiro, et al. (2002) (175) 
Dubinsky, et al. (2005) (176) 
Gardiner, et al. (2008) (170) 

Moderate 
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Clinical  TPMT genotype-based dosing reduced toxicity while 
maintaining drug efficacy in trial of AZA for moderate-severe 
atopic eczema 

Meggitt, et al. (2006) (177) 
  

Moderate 

Clinical  TPMT genotyping is useful in predicting myelosuppression 
from AZA in RA 

Kerstens, et al. (1995) (178) 
Marra, et al. (2002) (179) 
Corominas, et al. (2003) (180) 
Clunie, et al. (2004) (181) 

Moderate 

Clinical 
 

TPMT genotyping is useful in predicting myelosuppression 
from AZA in transplant recipients 

Schutz, et al. (1993) (158) 
McLeod, et al. (1993) (132) 
Sebbag, et al. (2000) (84) 
Formea, et al. (2004) (89) 
Budhiraja, et al. (2011) (95) 

High 

Clinical No change in treatment efficacy for IBD patients who receive 
AZA based on TPMT status or TG concentration 

Gonzalez-Lama, et al. (2011) 
(182) 

High  

Clinical  Increased risk of hepatotoxicity to MP in patients with TPMT 
wild-type genotype and/or higher MP metabolites (6-MMPN) 

Adam de Beaumais, et al. (2011) 
(183) 
Carvalho, et al. (2014) (45) 
Liu, et al. (2015) (44) 
El-Rashedy, et al. (2015) (42) 
Liu, et al. (2015) (43) 
Abdelaziz, et al. (2016) (41) 
Jimenez-Morales, et al. (2016) 
(114) 
Ebbesen, et al. (2017) (40) 
 

Moderate 
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TABLE S2. EVIDENCE LINKING NUDT15 GENOTYPE WITH THIOPURINE PHENOTYPE 

Type of 

experimental 

model (in vitro, in 

vivo, preclinical or 

clinical) 

Major findings References Level of 

evidence
a
 

In Vitro rs116855232 T allele is associated with decreased activity Moriyama, et al. (2016) (31) 
Valerie, et al. (2016) (184) 

High 

In Vitro rs116855232 T allele is associated with thermal instability and 
rapid degradation in vitro 

Valerie, et al. (2016) (184) High  

Clinical rs116855232 T allele is associated with increased risk of 
leukopenia, neutropenia, myelosuppression or other thiopurine 
toxicity 

Yang, et al. (2014) (107) 
Tanaka, et al. (2015) (138) 
Cheiengthong, et al. (2016) (185) 
Asada, et al. (2016) (186) 
Lee, et al. (2016) (110) 
Wong, et al. (2016) (187) 
Kakuta, et al. (2016) (188) 
Ailing, et al. (2016) (189) 
Zhu, et al. (2016) (113) 
Soler, et al. (2017) (116) 
Yin, et al. (2017) (190) 
Shah, et al. (2017) (191) 
Tanaka, et al. (2017) (192) 
Zhang, et al. (2018) (193) 
 

High  

Clinical  rs116855232 T allele is associated with decreased thiopurine 
dose 

Yang, et al. (2015) (136) 
Tanaka, et al. (2015) (138) 
Suzuki, et al. (2016) (194) 
Liang, et al. (2016) (146) 
Zgheib, et al. (2017) (141) 
Yin, et al. (2017) (190) 
Tanaka, et al. (2017) (192) 
 

High 

Clinical rs116855232 T T genotype is associated with severe hair loss Asada, et al. (2016) (186) 
Lee, et al. (2016) (110) 
Kakuta, et al. (2016) (188) 

Moderate 
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Ailing, et al. (2016) (189) 
Zhu, et al. (2016) (113) 
Shah, et al. (2017) (191) 

Clinical rs116855232 T allele is associated with accumulation of 
DNA-TG in vivo 

Moriyama, et al. (2017) (195) High 

Clinical  rs116855232 T allele is not associated with event free survival Tanaka, et al. (2015) (138) 
Liang, et al. (2016) (146) 

Weak 

Clinical  rs116855232 T allele is not associated with relapse Chiengthong, et al. (2016) (185) 
Suzuki, et al. (2016) (194) 

Weak 

 

 

 

 

*Rating Scheme for Quality of Evidence as per (196)  

ALL = acute lymphoblastic leukemia; AZA = azathioprine; CD = Crohn’s disease; RA = rheumatoid arthritis; IBD = inflammatory 

bowel disease; MP = mercaptopurine; TG = thioguanine; TPMT = thiopurine methyltransferase; 6-MMPN = 6-methylmercaptopurine 

nucleotides. 
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