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CPIC UPDATES 

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published in full 

on www.cpicpgx.org. Information will be reviewed and updated periodically on that website.  

 

New to this guideline: 

• Updated evidence reviews for SLCO1B1 (Table S1) and revised recommendation (Table 

2) 

• Addition of CYP2C9 and ABCG2 evidence reviews and recommendations (Tables S2 

and S3 and Tables 3 and 4)) 

• Evidence reviews and recommendation for all statins (Tables S1-S3 and Tables 2-6)) 

• Addition of the Figure 1. SLCO1B1 recommendations with intensity and statin dose 

stratified by SLCO1B1 phenotype 

• Evidence reviews for HMGC4 and CYP3A4/5 and all statins (Tables S4 and S5) 

• Combined recommendations for SLCO1B1/ABCG2 and SLCO1B1/CYP2C9 (Tables 5 

and 6) 

• Implementation resources (gene and drug resource mappings, CDS alerts, allele 

definition, allele frequency, allele functionality, diplotype to phenotype tables have all 

been updated and reformatted and are now available at 

https://cpicpgx.org/guidelines/cpic-guideline-for-statins/  

 

LITERATURE REVIEW 

We searched the PubMed database (1966 to July 2021) using the following keyword strategies: 

SLCO1B1: (simvastatin OR rosuvastatin OR pravastatin OR pitavastatin OR atorvastatin OR 

fluvastatin OR lovastatin OR Caduet OR Vytorin) AND (SLCO1B1 OR OATP1B1) AND 

(myopathy OR myalgia OR discontinuation OR tolerance OR pharmacokinetic OR efficacy OR 

LDL lowering OR Rhabdomyolysis OR Myositis OR “Statin associated muscle symptoms” OR 

withdrawal OR intolerance OR hepatocyte uptake OR response OR reaction) NOT 

("review"[Publication Type]) AND English[lang] AND ("2014/01/01"[PDAT] : 

"2021/07/20"[PDAT]) 

ABCG2: (simvastatin OR rosuvastatin OR pravastatin OR pitavastatin OR atorvastatin OR 

fluvastatin OR lovastatin OR Caduet OR Vytorin) AND (ABCG2 OR BCRP) AND (myopathy 
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OR myalgia OR discontinuation OR tolerance OR pharmacokinetic OR efficacy OR LDL 

lowering OR reaction OR Rhabdomyolysis OR Myositis OR “Statin associated muscle 

symptoms” OR withdrawal OR intolerance OR hepatocyte uptake OR response) NOT 

("review"[Publication Type]) AND English[lang]  

CYP2C9: (fluvastatin) AND (CYP2C9) 

HMGCR: (simvastatin OR rosuvastatin OR pravastatin OR pitavastatin OR atorvastatin OR 

fluvastatin OR lovastatin OR Caduet OR Vytorin) AND (HMGCR) AND (myopathy OR 

myalgia OR discontinuation OR tolerance OR pharmacokinetic OR efficacy OR LDL lowering 

OR reaction OR Rhabdomyolysis OR Myositis OR “Statin associated muscle symptoms” OR 

withdrawal OR intolerance OR hepatocyte uptake OR response) NOT ("review"[Publication 

Type]) AND English[lang] 

CYP3A4/5: (simvastatin OR rosuvastatin OR pravastatin OR pitavastatin OR atorvastatin OR 

fluvastatin OR lovastatin OR Caduet OR Vytorin) AND (CYP3A4 OR CYP3A5) AND 

(myopathy OR myalgia OR discontinuation OR tolerance OR pharmacokinetic OR efficacy OR 

LDL lowering OR reaction OR Rhabdomyolysis OR Myositis OR “Statin associated muscle 

symptoms” OR withdrawal OR intolerance OR hepatocyte uptake OR response) NOT 

("review"[Publication Type]) AND English[lang] 

Using these search terms, 1023 publications were identified. Study inclusion criteria included 

publications that incorporated analyses for the association between SLCO1B1, ABCG2, CYP2C9, 

HMGCR, or CYP3A4/5 genotypes and statins pharmacokinetic parameters as well as clinical 

outcomes. Non-English manuscripts and reviews were excluded. Following the application of 

these inclusion and exclusion criteria, 197 publications were reviewed and included in the 

evidence table (Table S1 to S5). 

 

AVAILABLE GENETIC TEST OPTIONS 

 

Desirable characteristics of pharmacogenetic tests, including naming of alleles and test report 

contents, have been extensively reviewed by an international group, including CPIC members 

(1). CPIC recommends that clinical laboratories adhere to these test reporting standards. CPIC 

gene-specific tables (see Allele Definition Table, Allele Functionality Table and Allele 

Frequency Table (https://cpicpgx.org/guidelines/cpic-guideline-for-statins/) adhere to these 
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allele nomenclature standards (1). Moreover, the Allele Definition Table, Allele Functionality 

Table, and Allele Frequency Table may be used to assemble lists of known functional and 

actionable pharmacogenetic variants and their population frequencies, which may inform 

decisions as to whether tests are adequately comprehensive in interrogations of alleles. 

Furthermore, the Association for Molecular Pathology and College of American Pathologists 

have published a joint recommendation for the key attributes of alleles recommended for clinical 

testing and a minimum set of variants that should be included in clinical genotyping assays for 

CYP2C9 (2). 

 

Commercially available genetic testing options change over time.  Additional updated 

information can be found at the Genetic Testing Registry (GTR). The GTR provides a central 

location for voluntary submission of genetic test information by providers and is available at 

http://www.ncbi.nlm.nih.gov/gtr/.  

 

LINKING GENETIC VARIABILITY TO VARIABILITY IN DRUG-RELATED 

PHENOTYPES 

 

SLCO1B1. Both SLCO1B1 decreased and poor function phenotypes are associated with 

increased exposure for most statins, with greater effects of poor function phenotypes.  Effects on 

exposure also vary by statin type (Figure S1). Therefore, the risk of SAMS varies based on statin 

type and statin dose. For simvastatin, the evidence linking SAMS to SLCO1B1 rs4149056 

(c.521T>C) is of high quality, and this association has been reproduced in retrospective studies 

of randomized trials and clinical practice-based cohorts (Table S1). This variant is present in 

several SLCO1B1 star alleles including the relatively common SLCO1B1*5 and *15 alleles. 

Although the association of rs4149056 with myopathy varies by statin, there is evidence 

supporting the role of SLCO1B1 variants in the systemic clearance of all statins (3) (Table S1).  

Pasanen et al. determined that homozygous carriers of the C allele at rs4149056 (CC genotype) 

had substantiality greater exposure to the active simvastatin acid (AUC0-12) than subjects 

homozygous for the ancestral T allele (4).  In single-dose studies (Figure S1), the observed 

plasma AUCs of active simvastatin acid, pitavastatin, atorvastatin, pravastatin and rosuvastatin 

have been 221%, 162-191%, 144%, 57-130% and 62-117% higher, respectively in rs4149056 
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CC homozygotes than in rs4149056 TT homozygotes (Figure S1). Thus, the recommendations 

in this guideline (for SLCO1B1, ABCG2 and CYP2C9) are based on both pharmacokinetic 

evidence and when available clinical evidence supporting increased risk of SAMS (see 

Supplemental Material for further detail). Further, we make note in this guideline when 

therapeutic recommendations are based solely on the basis of pharmacokinetic data due to the 

absence of clinical toxicity data related to SAMS (Figure 1). 

 

Genotype at rs4149056 may also alter the desired lipid-lowering efficacy of statins (Table S1). 

Because rs4149056 influences hepatic uptake of statins, the C allele (e.g., SLCO1B1*5 and *15) 

has opposite effects on toxicity and efficacy as the presence of the minor allele attenuates the 

LDL-cholesterol lowering effect (because hepatic HMGCR is the rate limiting step for de novo 

cholesterol biosynthesis). Carriers of the rs4149056 C allele experience lesser LDL-cholesterol 

reduction when taking simvastatin (5-8) but one report suggests this may be due to poor drug 

adherence (9). As anticipated from the pharmacokinetic data, the effect of rs4149056 on efficacy 

is minimal for pravastatin (10-12), rosuvastatin (13, 14), and pitavastatin (15-19). Even for 

simvastatin, however, the change in LDL-cholesterol level due to rs4149056 is small (<10 

mg/dl) (5), and there is no evidence that this variant impacts vascular events (20). As such, our 

recommendations are primarily based on this variant’s effects on PK and SAMS, rather than the 

relationship between rs4149056 and efficacy on lowering LDL or risk of cardiovascular events.  

 

ABCG2. ABCG2 decreased and poor function phenotypes are associated with increased exposure 

to rosuvastatin, with greater exposure for the poor function phenotypes (Table S2). In particular, 

rosuvastatin levels (AUC and Cmax) may be doubled in individuals with poor function 

phenotypes (21). Based on the observed increase in exposure, the risk for myopathy would also 

be expected to be increased (22). Nonetheless, there is only a single study directly assessing 

myopathy due to rosuvastatin use in individuals with decreased or poor function phenotypes 

which did not show any significant effect on myopathy (23). However, for efficacy, the 

JUPITER Trial showed an increase in lipid lowering effects of rosuvastatin in individuals with 

decreased and poor function phenotypes (24).  Dosing based on genotype for rosuvastatin must 

necessarily include other considerations such as liver or renal function and ancestry (Table 3).  

The higher levels of rosuvastatin observed in individuals of Asian ancestry have been attributed 
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to higher allele frequencies of the reduced function ABCG2 polymorphism, c.421G>A 

(rs2231142) (25); however, other factors may contribute to higher rosuvastatin levels in Asians 

(26). The effect of the ABCG2 polymorphism, rs2231142 (c.421C>A), has also been studied for 

its association with pharmacokinetic, toxicity or efficacy with other statins, such as atorvastatin, 

pitavastatin, fluvastatin and lovastatin (Table S2).  Except for fluvastatin, in which a single study 

showed a clear association of rs2231142 with exposure, the evidence for association of ABCG2 

genetic variants with exposure, response or toxicity to other statins is considered weak to 

moderate primarily because of small sample sizes or variation in results among studies (Table 

S2).  

 

CYP2C9. Genetic variations in CYP2C9 are associated with increased exposure to fluvastatin 

(Table S3), but the pharmacokinetics or pharmacodynamics of other statins are not affected. To 

date, studies have focused on two alleles, CYP2C9*2 (decreased function) and CYP2C9*3 (no 

function). Hirvensalo et al. showed that for fluvastatin the AUC was 25% and 75% greater per 

copy of the CYP2C9*2 and CYP2C9*3 variant allele, respectively. Additionally, CYP2C9*2 and 

CYP2C9*3 alleles are associated with increased risk of fluvastatin-induced adverse effects, 

including liver toxicity and SAMS. However, the evidence supporting increased risk of 

myopathy in carriers of decreased or poor function alleles of CYP2C9 is of moderate quality and 

mainly based on the pharmacokinetic evidence. Genetic variation in CYP2C9 has not been 

associated with fluvastatin lipid-lowering response. 

 

 

CYP3A4 and CYP3A5.  To date, studies have focused on two alleles, CYP3A4*1B (a promoter 

variant) and CYP3A5*3 (harboring a common intronic variant causing a splice defect which 

leads to truncated inactive CYP3A5 protein). While neither variant has been shown to predict 

myopathy while on atorvastatin, Wilke et al. describe an association for these variants with the 

severity of muscle damage in a small cohort of 68 patients who reported myalgias while taking  

atorvastatin (27). Although significant, the effect size was modest. For patients with myalgias on 

atorvastatin, the median CK level was 321 units/L in carriers of the CYP3A4*1B allele, vs 246 

units/L in non-carriers (adjusted p = 0.059), and the median CK level was 318 units/L in carriers 

of the CYP3A5*3 allele, vs 246 units/L in non-carriers (adjusted p = 0.010). 
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CYP3A4 and CYP3A5 genes are located on chromosome 7, at a locus that also contains two 

pseudogenes, and CYP3A7 which is predominantly expressed in utero (28). Functionally, the 

CYP3A4 and CYP3A5 enzymes have a high degree of overlap in their substrate specificity 

(biological redundancy), and there is wide patient-to-patient variability (more than 10-fold 

variation) in their expression in adults. While CYP3A4*1B and CYP3A5*3 are in strong linkage 

disequilibrium (D’ >0.8), the CYP3A5*3 allele is thought to be the causal variant driving the 

association between this locus and CK elevation during atorvastatin therapy. Because this variant 

only predicts the severity of how high the CK may go, it does not predict who will develop 

SAMS, and thus, the association may not be clinically actionable. There are additional published 

studies (see Table S5), but the overall strength of evidence for CYP3A4/5 and statin response 

was rated as weak. Therefore, the current guideline does not make any recommendations 

regarding CYP3A4/5 genotype at this time. 

 

HMGCR. HMGCR encodes for HMG-CoA reductase, the target of statins. Variations in 

HMGCR (e.g., rs1724484A>T and rs17238540T>G) have been shown to be associated with 

LDL-c response (see Table S4) but with very limited and weak data to support. Thus, the current 

guideline does not make recommendation regarding HMGCR and statin lipid response.   

 

 

LEVELS OF EVIDENCE 

The evidence summarized in Supplemental Table S1-S3 is graded using a scale modified 

slightly from Valdes et al. (29) 

High: Evidence includes consistent results from well-designed, well-conducted studies. 

Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is 

limited by the number, quality, or consistency of the individual studies; generalizability 

to routine practice; or indirect nature of the evidence. 

Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, gaps in 

the chain of evidence, or lack of information. 
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STRENGTH OF DOSING RECOMMENDATIONS 

CPIC’s dosing recommendations are based on weighing the evidence from a combination of 

preclinical functional and clinical data (Supplemental Tables S1-S3) as well as on some 

existing disease-specific consensus guidelines (30). Some of the factors that are considered in 

evaluating the evidence supporting dosage recommendations include: in vivo clinical outcome 

data for statins, in vivo pharmacokinetic and pharmacodynamic data for statins, in vitro 

enzyme/transporter activity of expressed wild-type or variant-containing gene, in vitro enzyme 

activity from tissues isolated from individuals of known genotypes, in vivo pre-clinical 

pharmacokinetic and pharmacodynamic studies, and in vitro studies of protein stability.  

 

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for just four 

categories for recommendations adopted from the rating scale for evidence-based 

recommendations on the use of antiretroviral agents (31):  

 

Strong recommendation for the statement: “The evidence is high quality and the desirable 

effects clearly outweigh the undesirable effects.” 

Moderate recommendation for the statement: “There is a close or uncertain balance as to 

whether the evidence is high quality and the desirable clearly outweigh the undesirable effects.” 

Optional recommendation for the statement: “The desirable effects are closely balanced with 

undesirable effects, or the evidence is weak or based on extrapolations. There is room for 

differences in opinion as to the need for the recommended course of action.” 

No recommendation: “There is insufficient evidence, confidence, or agreement to provide a 

recommendation to guide clinical practice at this time.” 

 

OTHER CONSIDERATIONS 

Drug-drug interactions. Between 1998 and 2001, more than forty cases of muscle toxicity 

associated with the use of cerivastatin were found to be fatal. Many of these occurred within the 

context of gemfibrozil, a drug that strongly inhibits the cytochrome P450 (CYP) 2C8-catalyzed 

biotransformation of cerivastatin and also inhibits membrane transport and phase II conjugation 

of statins (32, 33).  
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The biological disposition of each statin differs on a drug-by-drug basis. Some statins undergo 

extensive phase I oxidation (atorvastatin, fluvastatin, lovastatin, and simvastatin), others do not 

(pitavastatin, pravastatin, and rosuvastatin). CYP3A4 inhibitors (e.g., azole antifungals, protease 

inhibitors, amiodarone, and many calcium channel blockers) increase risk of myopathy for 

statins metabolized by CYP3A4/5 (e.g., simvastatin, lovastatin and atorvastatin) (34).  

 

Many statins also undergo additional modification through phase II conjugation by enzymes of 

the UDP-glucuronosyltransferase-1 (UGT1) family. This process can be altered by concomitant 

administration of fibric acids (35). Gemfibrozil, a fibric acid derivative, alters pharmacokinetic 

parameters of a variety of statins. By inhibiting the glucuronidation and membrane transport of 

simvastatin hydroxy-acids, gemfibrozil increases systemic exposure to active simvastatin acid 

(36) placing patients at increased risk for developing myopathy. Because of interactions such as 

these, all the statin package labels recommend reducing the dose of statins in patients using 

concomitant medications known to alter its pharmacokinetics. 

 

 

The Role of Ancestry.  There is some evidence that Asian Americans are one of three important 

groups with an elevated risk/benefit ratio for use of some statins compared to other ancestry 

groups; the other important groups were patients on cyclosporine (CSA)/immune suppression 

and patients with severe kidney failure) (37-43).Geographic differences in allele frequency for 

SLCO1B1 rs4149056 (c.521T>C) do not appear to contribute to this sensitivity in Asians (44). 

For rosuvastatin, this difference appears to be at least partly attributable to variability in efflux 

transporters such as ABCG2, as well as gene-gene and gene-environment interactions not yet 

defined (45).  For simvastatin, ancestry-dependent differences in SLCO1B1 variant frequency 

carry an undefined impact on outcome.  

 

Other Limitations. The pharmacokinetic predictors of SAMS are well understood (5, 36, 46-

61). Pharmacodynamic predictors have been less well characterized. Although the cellular 

mechanism linking statins to skeletal muscle damage still remains somewhat obscured, the 

weight of the evidence suggests that statin-mediated reduction in the levels of critical cholesterol 
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precursors (i.e., isoprenoids) can lead to mitochondrial dysfunction, and programmed cell death 

(62-65). While inherited variability in the prenylation of key mitochondrial oxygen transport 

proteins may drive a subclinical form of myopathy that becomes overtly manifest after exposure 

to statin, there is only limited evidence supporting the clinical utility of genotyping 

pharmacodynamic variants. 

 

Because rs4149056 (c.521T>C) can be inherited in combination with other SLCO1B1 variants 

that carry a protective effect, the C allele should not be assumed to confer risk with 100% 

certainty. Like all drug-gene-outcome relationships reviewed by CPIC, it is anticipated that these 

guidelines will be updated as more variants (both common and rare) are increasingly 

characterized, e.g., through deep re-sequencing. 

 

In the interim, a clear limitation is that rare and de novo variants are often not tested for within 

currently available genotyping tests, if discovered, it may be unclear how to act upon such 

results. Yet, rare exonic variants in SLCO1B1 have been shown to have clinical impact (e.g., 

methotrexate clearance) (66). Therefore, altered drug kinetics and increased risk for severe drug 

toxicity may still occur in the absence of a c.521 C allele, and a c.521TT genotype at rs4149056 

does not necessarily imply the absence of other potentially function-altering variant(s) in 

SLCO1B1. Allele and variant function are available on PharmVar.org as well as CPIC’s 

SLCO1B1Allele Functionality Table (67, 68). 

 

RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN EHR WITH 

CDS  

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) can 

help guide clinical pharmacogenetics at the point of care (69-73).  See 

https://cpicpgx.org/guidelines/cpic-guideline-for-statins/ for resources to support the adoption of 

CPIC guidelines within an EHR.  Based on the capabilities of various EHRs and local 

preferences, we recognize that approaches may vary across organizations. Our intent is to 

synthesize foundational knowledge that provides a common starting point for incorporating the 

use of SLCO1B1, ABCG2 and CYP2C9 genotype results to guide statin use in an EHR.   
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Effectively incorporating pharmacogenetic information into an EHR to optimize drug therapy 

should have some key attributes.  Pharmacogenetic results, an interpreted phenotype, and a 

concise interpretation or summary of the result must be documented in the EHR (74, 75). To 

incorporate a phenotype in the EHR in a standardized manner, genotype test results provided by 

the laboratory must be consistently translated into an interpreted phenotype (Table 1, main 

manuscript).  Because clinicians must be able to easily find the information, the interpreted 

phenotype may be documented as a problem list entry or in a patient summary section; these 

phenotypes are best stored in the EHR at the “person level” rather than at the date-centric 

“encounter level”.  Additionally, results should be entered as standardized and discrete terms to 

facilitate using them to provide point-of-care CDS (69, 76).  

 

Because pharmacogenetic results have lifetime implications and clinical significance, results 

should be placed into a section of the EHR that is accessible independent of the test result date to 

allow clinicians to quickly find the result at any time after it is initially placed in the EHR.  To 

facilitate this process, CPIC is providing gene-specific information figures and tables that 

include full diplotype to phenotype tables, diagram(s) that illustrate how pharmacogenetic test 

results could be entered into an EHR, example EHR consultation/genetic test interpretation 

language and widely used nomenclature systems for genes relevant to the CPIC guideline (see 

https://cpicpgx.org/guidelines/cpic-guideline-for-statins/).  

 

Point-of-care CDS should be designed to effectively notify clinicians of prescribing implications 

at any time after the test result is entered into the EHR. CPIC provides gene-drug specific tables 

that offer guidance to achieve these objectives with diagrams that illustrate how point-of-care 

CDS should be entered into the EHR, example pre- and post-test alert language, and widely used 

nomenclature systems for drugs relevant to the CPIC guideline (see 

https://cpicpgx.org/guidelines/cpic-guideline-for-statins/).   
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FIGURE S1. PHARMACOKINETIC IMPACT OF RS4149056 GENOTYPE FOR 

SEVERAL STATINS.  Effect of the SLCO1B1 c.521T>C variant (rs4149056) on plasma 

exposure (i.e., area under the concentration-time curve) for different statins, CC vs TT. This 

summary figure represents a composite of single-dose data from the following references: 

Pasanen et al (4), Ieiri et al (18), Lee et al. (77), Niemi et al (78), Pasanen et al (79), Choi et al 

(80), Deng et al (17), Ho et al (81). 
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Portions of this figure have been reproduced from reference (82) (Niemi et al) with permission 

from the author (MN), the publisher, the American Society for Pharmacology and Experimental 

Therapeutics (ASPET), and Pharmacological Reviews. 
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TABLE S1.  EVIDENCE LINKING SLCO1B1 GENOTYPE WITH STATIN PHENOTYPE 

 

Type of 
experimental model 
(in vitro, in vivo 
preclinical, or 
clinical) 

Major Findings References Level of 
Evidence 

Atorvastatin 
In vitro SLCO1B1 is the major atorvastatin uptake transporter.  The 

average contribution to atorvastatin uptake was SLCO1B1 > 
SLCO1B3 >> OATP2B1 > NTCP. 

Vildhede, et al. (2014) (83) Weak 

In vitro  SLCO1B1 rs4149056 (c.521T>C, *5) reduces atorvastatin 
transport activity by decreasing OATP1B1 function due to 
sorting errors in transporter localization 

Kameyama, et al. (2005) (84) Weak 

Clinical SLCO1B1 rs4149056 (c.521T>C) C allele is associated with 
an increased risk of atorvastatin-induced myopathy. 

Puccetti, et al. (2010) (85) 
Brunham, et al. (2012) (86) 
Santos, et al. (2012) (87) 
Hou, et al. (2015) (88) 
Hubacek, et al. (2015) (89) 
Mirosevic, et al. (2015) (90) 
Liu, et al. (2017) (91) 
Xiang, et al. (2018) (92) 
Du, et al. (2018) (93) 
Ramakumari, et al. (2018) (94) 
Mori, et al. (2019) (95) 
Linskey, et al. (2020) (96) 
Turner, et al. (2020) (97) 

Moderate 

Clinical  SLCO1B1 rs4149056 (c.521T>C) C allele is not 
significantly associated with an increased risk of 
atorvastatin-induced liver tox. 

Fukunaga, et al. (2016) (98) Weak  
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Clinical  SLCO1B1 rs4149056 (c.521T>C) C polymorphism affects 
the pharmacokinetics of atorvastatin (higher AUC and 
Cmax). 

Pasanen, et al. (2007) (79) 
Lee, et al. (2010) (99) 
DeGorter, et al. (2013) (22) 
Daka, et al. (2015) (100) 
Birmingham, et al. (2015) (101) 
Leon-Cachon, et al. (2016) (102) 
Rajput, et al. (2017) (103) 
Wang, et al. (2017) (104) 
Woo, et al. (2017) (105) 
Lee, et al. (2019) (106) 
Mori, et al. (2019) (95) 
Turner, et al. (2020) (97) 

High  

Clinical  Individuals with the SLCO1B1 rs4149056 (c.521T>C) C 
allele showed an attenuated total-cholesterol-lowering effect 
compared with those homozygous for the c.521T allele.   

Tachibana-Iimori, et al. (2004) (107) 
Drogari, et al. (2014) (108) 
Giannakopoulou, et al. (2014) (109) 
Meyer, et al. (2015) (110)  
Prado, et al. (2015) (111) 
Mladenovska, et al. (2017) (112) 
Du, et al. (2018) (93) 

Weak 

Clinical  The SLCO1B1 rs4149056 (c.521T>C) is associated with 
higher likelihood of dose decrease or switching during statin 
therapy. 

de Keyser, et al. (2014) (113) 
 

Moderate 

In vitro  SLCO1B1 rs2306283 (c.388A>G, *1b) did not alter the 
activity of OATP1B1 significantly. 

Kameyama, et al. (2005) (84) Weak 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with risk of myotoxicity in individuals that 
received atorvastatin. 

Liu, et al. (2017) (91)  
Du, et al. (2018) (93) 

Moderate 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with atorvastatin pharmacokinetics. 

Birmingham, et al. (2015) (101) 
Lee, et al. (2019) (106) 

Moderate 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with atorvastatin efficacy. 

Drogari, et al. (2014) (108) 
Prado, et al. (2015) (111) 
Kadam, et al. (2016) (114) 
Mladenovska, et al. (2017) (112) 

Weak 
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Du, et al. (2018) (93) 
Fluvastatin 
Clinical Presence of the SLCO1B1*14 allele is associated with 

enhanced lipid-lowering efficacy for fluvastatin. 
Couvert, et al. (2008) (115) Moderate 

Clinical The SLCO1B1 rs4149056 (c.521T>C) C variant is 
associated with decreased lipid- lowering response to 
fluvastatin. 

Couvert, et al. (2008) (115) 
Meyer, et al. (2015) (110) 
Xiang, et al. (2018) (116) 

Weak 

In vitro The uptake of fluvastatin was not influenced by SLCO1B1 
rs4149056 (c.521T>C) at concentrations >1 uM 

Deng, et al. (2008) (117) 
Xiang, et al. (2020 (118) 

Moderate 

In vitro The SLCO1B1 rs4149056 (c.521T>C) C variant is 
associated with reduced uptake of both fluvastatin 
enantiomers (3R,5S-fluvastatin and 3S,5R-fluvastatin). 

Hirvensalo, et al. (2019) (119) Moderate 

Clinical Fluvastatin PK did not differ between subjects with 
different SLCO1B1 rs4149056 (c.521T>C) genotypes. 

Niemi, et al. (2006) (120) 
Zhou, et al. (2012) (121) 
Hirvensalo, et al. (2019) (119) 
Mori, et al. (2019) (95)  
Xiang, et al. (2020) (118) 

Weak  

Clinical  SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with lipid-lowering response to fluvastatin. 

Couvert, et al. (2008) (115) 
Xiang, et al. (2018) (116) 

Weak  

Lovastatin 
Clinical SLCO1B1 rs4149056 (c.521T>C) C allele is associated with 

an increased concentration of lovastatin acid but have no 
significant effect on lovastatin lactone. 

Tornio, et al. (2015) (122) 
Zhao, et al. (2017) (123) 

Weak 
 

 
Clinical SLCO1B1 rs2306283 (c.388A>G) is not associated with 

concentration of lovastatin acid and lovastatin lactone. 
Tornio, et al. (2015) (122) 
Zhao, et al. (2017) (123) 

Weak 

Clinical SLCO1B1 rs4149056 (c.521T>C) C allele is associated with 
an increased risk of statin-induced myopathy + 
rhabdomyolysis. 

Lu, et al. (2021)(124) Moderate 

Pitavastatin 
Clinical SLCO1B1 SNP rs4149056 (c.521T>C) did not affect the 

lipid-lowering efficacy of pitavastatin. 
Yang, et al. (2010) (125) Moderate 
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Clinical SLCO1B1 rs4149056 (c.521T>C) C allele is associated with 
an increased AUC and decreased clearance of pitavastatin. 

Chung, et al. (2005) (126) 
Ieiri, et al. (2007) (127) 
Deng, et al. (2008) (117) 
Oh, et al. (2013) (128) 
Zhou, et al. (2013) (129) 
Mori, et al. (2019) (95) 

High  

Clinical SLCO1B1 SNP rs2306283 (c.388A>G) did not affect the 
lipid-lowering efficacy of pitavastatin. 

Yang, et al. (2010) (125) Moderate 

Clinical Pitavastatin AUC and Cmax increased for carriers of the 
SLCO1B1 rs2306283 (c.388A>G) polymorphism. 

Wen, et al. (2010) (130) Weak 

Simvastatin 
In vitro SLCO1B1 rs4149056 (c.521T>C) is the key SNP 

determining the functional properties of SLCO1B1*5, *15 
allelic proteins and that decreased activities of these variant 
proteins are mainly caused by a sorting error produced by 
this SNP. Reduced transport function for SLCO1B1*15 as 
compared with *1a. 

Iwai, et al. (2004) (131) 
Kameyama, et al. (2005) (84)  
Ho, et al. (2006) (132) 
 

Moderate 

Clinical SLCO1B1 rs4149056 (c.521T>C) C allele is associated with 
an increased risk of simvastatin-induced myopathy. 

Link, et al. (2008) (133) 
Brunham, et al. (2012) (86) 
Hubacek, et al. (2015) (89) 
Liu, et al. (2017) (91) 
Shek, et al. (2017) (134) 
Bakar, et al. (2018) (135) 
Flores-Unzueta, et al. (2018) (136) 
Xiang, et al. (2018) (92) 
Carr, et al. (2019) (137) 
C. Thambiah, et al. (2019) (138) 
 

High 

Clinical SLCO1B1*17 is associated with an increased risk of 
simvastatin-induced myopathy. 

Chan, et al. (2019) (139)  
 

Weak 

Clinical SLCO1B1 rs4149056 C (c.521T>C) polymorphism 
markedly affects the pharmacokinetics of active simvastatin 
acid, but has no significant effect on parent simvastatin. 

Pasanen, et al. (2006) (4) 
Zhou, et al. (2013) (140) 
Tsamandouras, et al. (2014) (141) 

High 
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Birmingham, et al. (2015) (101) 
Choi, et al. (2015) (142)  
Luzum, et al. (2015) (143) 
Hasunuma, et al. (2016) (144) 
Jiang, et al. (2017) (145) 
Wagner, et al. (2018) (146) 
Ogungbenro, et al. (2019) (147) 
 

Clinical Individuals with the SLCO1B1 rs4149056 (c.521T>C) C 
allele showed an attenuated lipid-lowering effect compared 
with those homozygous for the 521T allele. The effect size 
may be small. 

Tachibana-Iimori, et al. (2004) (107) 
Bailey, et al. (2010) (148) 
Hopewell, et al. (2013) (149) 
Giannakopoulou, et al. (2014) (109) 
Dou, et al. (2015) (150) 
Li, et al. (2015) (151) 
Meyer, et al. (2015) (110) 
Kitzmiller, et al. (2017) (152) 
Oni-Orisan, et al. (2018) (153) 
Kaewboonlert, et al. (2018) (154) 
Wu, et al. (2018) (155) 

High 

Clinical Individuals with the rs4149056 C (c.521T>C) allele may be 
more likely to have dose decrease or switch. 

De Keyser, et al. (2014) (113) Weak 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with risk of myotoxicity in individuals that 
received atorvastatin, simvastatin. 

Liu, et al. (2017) (91) Weak 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with simvastatin or simvastatin acid 
pharmacokinetics. 

Birmingham, et al. (2015) (101) Weak 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not significantly 
associated with the lipid-lowering effect of simvastatin. 

Kaewboonlert, et al. (2018) (154) 
Wu, et al. (2018) (155) 

Weak 

Statin 
Clinical  SLCO1B1 rs2900478 is associated with a statistically 

significant though clinically negligible, lipid-lowering effect 
of statin. 

Postmus, et al. (2014) (20) Moderate 
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Clinical SLCO1B1*5 (rs4149056) (c.521T>C) is associated with an 
increased risk of statin-induced myopathy. 

Voora, et al. (2009) (156) 
Hubacek, et al. (2015) (89) 
Khine, et al. (2016) (157) 
Bakar, et al. (2018) (135) 
C. Thambiah, et al. (2019) (138) 
Floyd, et al. (2019) (158) 

Weak 

Clinical Presence of the SLCO1B1 rs4149056 (c.521T>C)  C allele 
is associated with increased risk of composite adverse 
events when treated with statins (atorvastatin, pravastatin or 
simvastatin) in patients with hypercholesterolemia. 

Voora, et al. (2009) (156) 
Carr, et al. (2013) (159) 

Moderate 

Clinical  SLCO1B1 rs4149056 (c.521T>C) C allele is associated with 
an increased LDL-C levels in statin-treated patients. 

Li, et al. (2015) (151) Moderate 

Clinical SLCO1B1 rs2306283 (c.388A>G) is not associated with an 
increased LDL-C levels in statin-treated patients. 

Li, et al. (2015) (151) Moderate 

Clinical Genetically guided statin therapy improves patients’ 
perceptions of statins, more statin prescriptions, and lower 
LDL-C. 

Li, et al. (2014) (160) 
Peyser, et al. (2018) (161) 

Weak  
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TABLE S2.  EVIDENCE LINKING ABCG2 GENOTYPE WITH STATIN PHENOTYPE 

Type of 
experimental 
model (in vitro, 
in vivo 
preclinical, or 
clinical) 

Major Findings References  Level of 
Evidence 

Clinical ABCG2 rs2231142 (c.421C>A) CA genotype is found to be more 
frequent in statin-intolerant cases. 

Shek, et al. (2017) (134) 
 

Weak 

Clinical ABCG2 rs2231142 (c.421C>A) is associated with simvastatin-
induced liver symptoms. 

Shek, et al. (2018) (162) 
 

Moderate  

Clinical ABCG2 rs2231142 (c.421C>A) may be associated with statin-
induced muscle symptoms. 

Chan, et al. (2019) (139) Weak 

Clinical ABCG2 rs2231142 (c.421C>A) A allele carriers had higher 
AUC(0-t) and Cmax of simvastatin acid as compared with those 
carrying the CC genotype. It did not affect simvastatin lactone 
concentration. 

Keskitalo, et al. (2009) 
(163) 
Birmingham, et al. 
(2015) (101) 
Choi, et al. (2015) (142) 
 

Weak 

Clinical ABCG2 rs2231142 (c.421C>A) is not significantly associated 
with the lipid-lowering effect of simvastatin. 

Bailey, et al. (2010) 
(148) 

High  

In vitro Rosuvastatin is a substrate of SLCO1B1, SLCO1B3, and 
SLCO2B1 in sinusoidal uptake and of MRP2, MDR1, and 
ABCG2 in biliary excretion. SLCO1B1 as well as NTCP plays 
an important role in rosuvastatin uptake into human hepatocytes. 

Kitamura, et al. (2018) 
(164) 

Moderate 

In vitro Rosuvastatin is transported efficiently by ABCG2 and suggest 
that ABCG2 plays a significant role in the disposition of 
rosuvastatin. 

Huang, et al. (2006) 
(165) 

High   

Clinical  ABCG2 rs2231142 (c.421C>A) is not significantly associated 
with high SIM risk. 

Sreter, et al. (2017) (166) 
Bai, et al. (2019) (23) 

Moderate  

Clinical  ABCG2 rs2231142 (c.421C>A) is associated with greater LDL 
response to rosuvastatin. 

Tomlinson, et al. (2010) 
(167) 

Moderate 
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Lee, et al. (2013) (168) 
Kim, et al. (2017) (169) 
Kim, et al. (2019) (170) 

Clinical ABCG2 SNP rs2199936 is significantly associated with absolute 
LDL-C reduction. (rs2231142 (421C>A) is in LD with 
rs2199936 in the HapMap (CEU, r2=0.81)). 

Chasman, et al. (2012) 
(171) 
 

High  

Clinical ABCG2 rs2231142 (c.421C>A) is significantly associated with 
rosuvastatin exposure. Genotypes AC + AA are associated with 
increased exposure to rosuvastatin compared to CC. 

Zhang, et al. (2006) 
(172) 
Keskitalo, et al. (2009) 
(21) 
Zhou, et al. (2013) (173) 
DeGorter, et al. (2013) 
(22) 
Lee, et al. (2013) (168) 
Birmingham, et al. 
(2015) (174) 
Birmingham, et al. 
(2015) (101) 
Wan, et al. (2015) (175) 
Kim, et al. (2019) (170) 
Liu, et al. (2016) (176) 
Kashihara, et al. (2017) 
(177) 
Bai, et al. (2019) (23) 
Soko, et al. (2019) (178) 
Zhang, et al. (2020) 
(179) 

High 

Clinical ABCG2 rs2231142 (c.421C>A) A allele is not significantly 
associated with an increased risk of atorvastatin-induced liver 
tox. 

Fukunaga, et al. (2016) 
(98) 

Weak 

Clinical ABCG2 rs2231142 (c.421C>A) A allele is significantly 
associated with an increased risk of atorvastatin-induced adverse 
events. 

Mirosevic Skvrce, et al. 
(2015) (90) 

Moderate 
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Clinical ABCG2 rs2231142 (c.421C>A) is significantly associated with 
atorvastatin exposure. 

Keskitalo, et al. (2009) 
(21) 
DeGorter, et al. (2013) 
(22) 
Birmingham, et al. 
(2015) (101) 
Tsamandouras, et al. 
(2017) (180) 
Lee, et al. (2019) (106) 

Weak 

Clinical In vitro study showed that ABCG2 affect atorvastatin transport. Keskitalo, et al. (2009) 
(21) 

High   

Clinical ABCG2 rs2231142 (c.421C>A) is not associated with 
atorvastatin response. 

Prado, et al. (2018) (181) Moderate 

Clinical ABCG2 rs2231142 (c.421C>A) is not associated with decreased 
clearance of pravastatin. 

Ho, et al. (2007) (182) 
Keskitalo, et al. (2009) 
(163) 
Lu, et al. (2016) (183) 

Moderate 

In vitro Pitavastatin acid is a substrate of ABCG2, whereas the lactone 
form is not. ABCG2 is involved in the biliary excretion of 
pitavastatin. 

Fujino, et al. (2005) 
(184) 
Hirano, et al. (2005) 
(185) 

Moderate 

Clinical ABCG2 rs2231142 (c.421C>A) is not significantly associated 
with concentration of pitavastatin. 

Ieiri, et al. (2007) (127) 
Oh, et al. (2013) (128) 

Moderate 

Clinical ABCG2 rs2231142 (c.421C>A) AA genotype is associated with 
higher fluvastatin AUC. 

Keskitalo, et al. (2009) 
(163) 

High 

Clinical ABCG2 rs2231142 (c.421C>A) is associated with greater odds of 
developing fluvastatin-induced adverse effects (liver and muscle 
toxicity). 

Mirosevic, et al. (2013) 
(186) 

Moderate 

Clinical ABCG2 rs2231142 (c.421C>A) is not associated with 
concentration of lovastatin acid and lovastatin lactone. 

Zhao, et al. (2017) (123) Weak 



25 
CPIC guidelines for SLCO1B1 and statin-induced myopathy- Supplement v3.0 
 

TABLE S3.  EVIDENCE LINKING CYP2C9 GENOTYPE WITH STATIN PHENOTYPE 

Type of 
experimental 
model (in vitro, 
in vivo 
preclinical, or 
clinical) 

Major Findings References  Level of 
Evidence 

In vitro Fluvastatin is metabolized in human liver by several enzymes, 
with CYP2C9 being the most important, followed by CYP3A4 
and CYP2C8. 

Fischer, et al. (1999) (187) 
Toda, et al. (2009) (188) 
Hirvensalo, et al. (2019) 
(119) 

 

High 

In vitro Fluvastatin is a potent inhibitor of CYP2C9. Transon, et al. (1996) 
(189) 
Cohen, et al. (2000) (190) 

Moderate 

In vitro CYP2C9*2, *3 were associated with reduced clearance of 
fluvastatin enantiomers in vitro. 

Hirvensalo, et al. (2019) 
(119) 

Moderate 

In vitro Fluvastatin and lovastatin increased CYP2C9 protein level in 
endothelial cells. 

Bertrand-Thiebault, et al. 
(2007) (191) 

Weak 

Clinical CYP2C9*2, *3 are not significantly associated with lipid-lowering 
response to fluvastatin. 

Kirschheiner, et al. (2003) 
(192) 
Xiang, et al. (2018) (116) 

Weak 

Clinical CYP2C9*3 affected the pharmacokinetics of both fluvastatin 
enantiomers. CYP2C9*3 associated with significantly increased 
area under the plasma concentration-time curve (AUC) of both 
3R,5S-fluvastatin and 3S,5R-fluvastatin. 

Kirschheiner, et al. (2003) 
(192) 
Toda, et al. (2009) (188) 
Zhou, et al. (2012) (121) 
Hirvensalo, et al. (2019) 
(119) 
Xiang, et al. (2020) (118) 

High 

Clinical CYP2C9*2 influences the pharmacokinetics of the fluvastatin 
(affect the AUC of both fluvastatin enantiomers). 

Fischer, et al. (1999) (187) Moderate 
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Kirschheiner, et al. (2003) 
(192) 
Hirvensalo, et al. (2019) 
(119) 

Clinical CYP2C9*2 or *3 allele is associated with greater odds of 
developing fluvastatin-induced adverse effects (liver and muscle 
toxicity). 

Mirosevic, et al. (2013) 
(186) 

Moderate 

Unknown Statins, CYP2C9 genotypes are not significantly associated with 
muscle tox or lipid response to statins (simvastatin, fluvastatin, 
rosuvastatin). 

Zuccaro, et al. (2007) 
(193) 

Weak 

Clinical A case with liver cirrhosis who experienced fluvastatin-induced 
fatal rhabdomyolysis. This patient had been treated with 
simvastatin (20 mg/day) for coronary artery disease and was 
switched to fluvastatin (20 mg/day) 10 days before admission. 

Baek, et al. (2011) (194) Weak 

Clinical CYP2C9*3 is not associated with LDL response to rosuvastatin. Bailey, et al. (2010) (148) Moderate  
Clinical CYP2C9*3 allele is associated with an increased concentration of 

pitavastatin. 
Zhou, et al. (2013) (129) Weak 
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TABLE S4.  EVIDENCE LINKING HMGCR GENOTYPE WITH STATIN PHENOTYPE 

Type of 
experimental 
model (in vitro, 
in vivo 
preclinical, or 
clinical) 

Major Findings References  Level of 
Evidence 

Clinical  Multiple cases of statin-related immune-mediated necrotizing 
myopathy (SINAM) were described. Many are positive for anti-
HMGCR antibody, but there are exceptions. 

Mygland, et al. (2014) 
(195) 
Ong, et al. (2017) (196) 
Karunaratne, et al. (2018) 
(197) 
Pitlick, et al. (2019) (198) 

Weak 

Clinical  HMGCR haplotypes H2 and H7 were associated with attenuated 
reduction of LDL cholesterol when treated with simvastatin. Tag 
SNP rs17238540 and rs17244841 were also associated with altered 
LDL-C response. 

Krauss, et al. (2008) (199) 
 

Weak 

 Carriers of both HMGCR H2/H7 haplotype and LDLR L5 
haplotype had significantly attenuated statin-mediated changes in 
LDLC and LDLR in comparison to either noncarriers or carriers of 
individual haplotypes.  This effect is more evident in African-
Americans than in European-Americans. 

Mangravite, et al. (2010) 
(200) 

Weak 

 HMGCR ScrF I polymorphism is associated with vLDL-C lowering 
effect by simvastatin. 

Ying, et al. (2007) (201) 
 

Weak 

In vitro HMGCR variant rs3846662 influenced HMGCR alternative 
splicing. Greater upregulation of HMGCRv_1 in vitro was 
significantly correlated with reduced statin response (smaller 
reductions of plasma total and low-density lipoprotein cholesterol, 
triglycerides, and apolipoprotein B). 

Medina, et al. (2008) 
(202) 

Weak 

Clinical HMGCR variants rs17238540 and rs17244841 were significantly 
associated with a smaller reduction in total cholesterol and  LDL 
cholesterol following pravastatin therapy. 

Chasman, et al. (2004) 
(203) 

Weak 
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Polisecki, et al. (2008) 
(204) 

Clinical  HMGCR variants rs17238540, rs17244841 were not associated with 
lipid response to fluvastatin. 

Singer, et al. (2007) (205) 
 

Weak 

Clinical  Multiple cases of statin-related immune-mediated necrotizing 
myopathy (SINAM) were described. All are previously atorvastatin 
treated.  All are positive for anti-HMGCR antibody. 

Nichols, et al. (2015) 
(206) 
De Cock, et al. (2018) 
(207) 
Woolley, et al. (2018) 
(208) 
Sharma, et al. (2019) 
(209) 

Weak 

In vitro Atorvastatin had no significant effect on LRP or HMGCR mRNA 
levels in circulating mononuclear cells. 

Pocathikorn, et al. (2010) 
(210) 

Weak 

Clinical HMGCR variants rs17238540 and rs17244841 were significantly 
associated with reduction in total cholesterol and LDL-c levels. 

Thompson, et al. (2009) 
(211) 
Poduri, et al. (2010) (212) 
Kirac, et al. (2017) (213) 

Weak 

Clinical HMGCR variant rs17671591 is associated with greater plasma 
LDL-C reductions after therapy with atorvastatin. 

Cuevas, et al. (2016) 
(214) 
 

Weak 

Clinical HMGCR rs3846662 was associated with LDL lowering response to 
atorvastatin. 
 

Chung, et al. (2012) (215) 
Yue, et al. (2016) (216) 
 

Weak 

Clinical HMGCR variants (rs10474433, rs17671591, rs6453131) were 
associated with statin response by with smaller effect than the ApoE 
variants. 

Thompson, et al. (2009) 
(211) 
 

Weak 

In vitro  Atorvastatin insensitivity is associated with upregulation of 
HMGCR and SCD. 

Lettiero, et al. (2018) 
(217) 

Weak 
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TABLE S5.  EVIDENCE LINKING CYP3A4/5 GENOTYPE WITH STATIN PHENOTYPE 

 

Type of 
experimental 
model (in vitro, 
in vivo 
preclinical, or 
clinical) 

Major Findings References  Level of 
Evidence 

Clinical CYP3A5*3/*3 genotype (6986A>G) is associated with 
simvastatin-induced muscle symptoms. 

Shek, et al. (2017) (134) 
Liu, et al. (2017) (91) 
 

Weak 

Clinical  CYP3A5*3/*3 genotype (6986A>G) is more frequent in statin-
intolerant cases. 

Shek, et al. (2018) (162) Weak 

Clinical CYP3A5*3/*3 genotype (6986A>G) is associated with 
simvastatin-induced liver symptoms. 

Shek, et al. (2017) (134) Weak 

Clinical When simvastatin-intolerant patients were switched to 
rosuvastatin, serious side effect were not observed and many of 
them carry CYP3A5*3/*3. 

Shek, et al. (2018) (162) Weak 

Clinical  CYP3A4 rs2740574 (G>A) G allele is associated with smaller 
risk of a dose decrease or switch to another drug during 
simvastatin and atorvastatin therapy. 

Becker, et al. (2010) (218) Weak 

Clinical  CYP3A4*22 is associated with lower statin dose (atorvastatin, 
simvastatin, or lovastatin). 

Wang, et al. (2011) (219) Weak 

Clinical  CYP3A5*3 is associated with cholesterol response to 
simvastatin. 

Kivisto, et al. (2004) (220) 
Fiegenbaum, et al. (2005) 
(221) 
Hu, et al. (2013) (222) 
Kolovou, et al. (2014) (223) 
Kitzmiller, et al. (2017) 
(152) 

Weak 
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Clinical  CYP3A4*22 is associated with cholesterol response to 
simvastatin. 

Elens, et al. (2011) (224) 
Ragia, et al. (2015) (225) 
Kitzmiller, et al. (2017) 
(152) 

Weak 

Clinical  CYP3A4*1G is not associated with cholesterol response to 
simvastatin. 

Gao, et al. (2008) (226) 
Hu, et al. (2013) (222) 

Weak 

Clinical  CYP3A4*1B is not associated with cholesterol response to 
simvastatin. 

Fiegenbaum, et al. (2005) 
(221) 

Weak 

Clinical  CYP3A4*4 is not associated with LDL lowering response to 
simvastatin but may affect percentage reductions in total 
cholesterol and triglycerides. 

Wang, et al. (2005) (227) Weak 

Clinical  CYP3A5*3 may be associated with higher simvastatin 
concentration. 

Kim, et al. (2007) (228) 
Kitzmiller, et al. (2014) 
(229) 
Choi, et al. (2015) (142) 
Luzum, et al. (2015) (143) 

Weak 

Clinical  CYP3A4*22 is associated with higher plasma simvastatin 
concentration compared to CYP3A4*1/*1. 

Kitzmiller, et al. (2014) 
(229) 
Luzum, et al. (2015) (143) 

Weak 

Clinical  CYP3A5*3 is not significantly associated with risk of 
myotoxicity in individuals that received rosuvastatin. 

Liu, et al. (2017) (91) 
Ramakumari, et al. (2018) 
(94) 

Weak 

Clinical Patients with CYP3A5*1 allele achieved LDL cholesterol target 
more frequently as compared to patients with CYP3A5*3/*3 
when treated with rosuvastatin. 

Bailey, et al. (2010) (148) Weak 

Clinical  CYP3A5*3 is not significantly associated with risk of 
myotoxicity in individuals that received atorvastatin, however it 
may affect the severity of myotoxicity (magnitude of serum CK 
elevation). 

Wilke, et al. (2005) (27) 
Liu, et al. (2017) (91) 
Ramakumari, et al. (2018) 
(94) 
 

Weak 

Clinical  CYP3A4*22 is not significantly associated with adverse events in 
individuals that received atorvastatin. 

Mirosevic, et al. (2015) (90) Weak 

Clinical  CYP3A5*3 is significantly associated with atorvastatin efficacy. Kivisto, et al. (2004) (220) Weak 
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Thompson, et al. (2005) 
(230) 
Willrich, et al. (2008) (231) 
Rosales, et al. (2012) (232) 
Drogari, et al. (2014) (108) 
Wei, et al. (2015) (233) 

Clinical  CYP3A4*22 is not significantly associated with atorvastatin 
efficacy. 

Drogari, et al. (2014) (108) 
Ragia, et al. (2015) (225) 

Weak 

Clinical  CYP3A4 rs2740574 G allele may be associated with a greater 
reduction in serum total cholesterol and LDL-c.as compared to 
AA when treated with atorvastatin. 

Kajinami, et al. (2004) (234) 
Rosales, et al. (2012) (232) 

Weak 

Clinical  CYP3A4 rs2242480 is associated with lipid-lowering efficacy of 
atorvastatin. 

Gao, et al. (2008) (226) 
Peng, et al. (2018) (235) 

Weak 

Clinical  CYP3A4 rs2242480 is associated with lower AUC and greater 
clearance when treated with atorvastatin. 

He, et al. (2014) (236) Weak  

Clinical  CYP3A5 genotype has minimal effects on the pharmacokinetic 
parameters of atorvastatin. 

Shin, et al. (2011) (237) Weak 

Clinical  CYP3A5*3 is associated with enhanced lovastatin lipid lowering 
efficacy. 

Kivisto, et al. (2004) (220) Weak 

Clinical  CYP3A5*3 is not significantly associated with lipid lowering 
efficacy to fluvastatin. 

Kivisto, et al. (2004) (220) Weak  

Clinical  CYP3A5*3 is not significantly associated with lipid lowering 
efficacy to pravastatin. 

Kivisto, et al. (2004) (220) Weak 
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