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GUIDELINE UPDATES 

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, 

OPRM1, and COMT genotype and select opioid therapy is published in full on the CPIC website 

(1). Relevant information will be reviewed periodically, and updated guidelines published online.  

 

LITERATURE REVIEW 

To update the existing CPIC guideline on codeine and CYP2D6, we searched the PubMed® 

database (September 2013 to July 2020) for keywords (codeine) AND (CYP2D6 OR 

(cytochrome P450 2D6)). For the remaining literature searches for other opioids and OPRM1 

and COMT we searched the entirety of the PubMed® database (1966 to July 2020) using the 

keywords presented in the table below. Search results were filtered to show studies conducted in 

humans only. 

 

Inclusion criteria included studies gathering primary data (i.e., no review articles or meta-

analyses), studies in human subjects or cells and clear results pertaining to an association (or lack 

or) between genetic variants in CYP2D6, OPRM1 and/or COMT and response to opioids. 

Following application of the inclusion criteria, 285 publications were reviewed and included in 

the evidence tables S1-S4. As some publications contained findings for more than one gene, they 

have been included in multiple evidence tables. 

 

CYP2D6 searches OPRM1 searches COMT searches 
Alfentanil AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Alfentanil AND (OPRM1 OR (mu 
opioid receptor)) 

Alfentanil AND (COMT OR (catechol-
O-methyltransferase)) 

Alvimopan AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Alvimopan AND (OPRM1 OR 
(mu opioid receptor)) 

Alvimopan AND (COMT OR 
(catechol-O-methyltransferase)) 

Buprenorphine AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Buprenorphine AND (OPRM1 OR 
(mu opioid receptor)) 

Buprenorphine AND (COMT OR 
(catechol-O-methyltransferase)) 

Butorphanol AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Butorphanol AND (OPRM1 OR 
(mu opioid receptor)) 

Butorphanol AND (COMT OR 
(catechol-O-methyltransferase)) 

Carfentanil AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Carfentanil AND (OPRM1 OR 
(mu opioid receptor)) 

Carfentanil AND (COMT OR 
(catechol-O-methyltransferase)) 

Dezocine AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Codeine AND (OPRM1 OR (mu 
opioid receptor)) 

Codeine AND (COMT OR (catechol-O-
methyltransferase)) 

Dihydrocodeine AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Dezocine AND (OPRM1 OR (mu 
opioid receptor)) 

Dezocine AND (COMT OR (catechol-
O-methyltransferase)) 

Fentanyl AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Dihydrocodeine AND (OPRM1 
OR (mu opioid receptor)) 

Dihydrocodeine AND (COMT OR 
(catechol-O-methyltransferase)) 
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Hydrocodone AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Fentanyl AND (OPRM1 OR (mu 
opioid receptor)) 

Fentanyl AND (COMT OR (catechol-
O-methyltransferase)) 

Hydromorphone AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Hydrocodone AND (OPRM1 OR 
(mu opioid receptor)) 

Hydrocodone AND (COMT OR 
(catechol-O-methyltransferase)) 

Levorphanol AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Hydromorphone AND (OPRM1 
OR (mu opioid receptor)) 

Hydromorphone AND (COMT OR 
(catechol-O-methyltransferase)) 

Loperamide AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Levorphanol AND (OPRM1 OR 
(mu opioid receptor)) 

Levorphanol AND (COMT OR 
(catechol-O-methyltransferase)) 

Meperidine AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Loperamide AND (OPRM1 OR 
(mu opioid receptor)) 

Loperamide AND (COMT OR 
(catechol-O-methyltransferase)) 

Methadone AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Meperidine AND (OPRM1 OR 
(mu opioid receptor)) 

Meperidine AND (COMT OR 
(catechol-O-methyltransferase)) 

Methylnaltrexone AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Methadone AND (OPRM1 OR 
(mu opioid receptor)) 

Methadone AND (COMT OR 
(catechol-O-methyltransferase)) 

Morphine AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Methylnaltrexone AND (OPRM1 
OR (mu opioid receptor)) 

Methylnaltrexone AND (COMT OR 
(catechol-O-methyltransferase)) 

Nalbuphine AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Morphine AND (OPRM1 OR (mu 
opioid receptor)) 

Morphine AND (COMT OR (catechol-
O-methyltransferase)) 

Nalmefene AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Nalbuphine AND (OPRM1 OR 
(mu opioid receptor)) 

Nalbuphine AND (COMT OR 
(catechol-O-methyltransferase)) 

Naloxone AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Nalmefene AND (OPRM1 OR 
(mu opioid receptor)) 

Nalmefene AND (COMT OR (catechol-
O-methyltransferase)) 

Naltrexone AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Naloxone AND (OPRM1 OR (mu 
opioid receptor)) 

Naloxone AND (COMT OR (catechol-
O-methyltransferase)) 

Oxycodone AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Naltrexone AND (OPRM1 OR 
(mu opioid receptor)) 

Naltrexone AND (COMT OR 
(catechol-O-methyltransferase)) 

Oxymorphone AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Oxycodone AND (OPRM1 OR 
(mu opioid receptor)) 

Oxycodone AND (COMT OR 
(catechol-O-methyltransferase)) 

Pentazocine AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Oxymorphone AND (OPRM1 OR 
(mu opioid receptor)) 

Oxymorphone AND (COMT OR 
(catechol-O-methyltransferase)) 

Remifentanil AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Pentazocine AND (OPRM1 OR 
(mu opioid receptor)) 

Pentazocine AND (COMT OR 
(catechol-O-methyltransferase)) 

Sufentanil AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Remifentanil AND (OPRM1 OR 
(mu opioid receptor)) 

Remifentanil AND (COMT OR 
(catechol-O-methyltransferase)) 

Tapentadol AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Sufentanil AND (OPRM1 OR (mu 
opioid receptor)) 

Sufentanil AND (COMT OR (catechol-
O-methyltransferase)) 

Tilidine AND (CYP2D6 OR 
(cytochrome P450 2D6)) 

Tapentadol AND (OPRM1 OR 
(mu opioid receptor)) 

Tapentadol AND (COMT OR 
(catechol-O-methyltransferase)) 

Tramadol AND (CYP2D6 
OR (cytochrome P450 2D6)) 

Tilidine AND (OPRM1 OR (mu 
opioid receptor)) 

Tilidine AND (COMT OR (catechol-O-
methyltransferase)) 

(opioid OR (opioids)) AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

Tramadol AND (OPRM1 OR (mu 
opioid receptor)) 

Tramadol AND (COMT OR (catechol-
O-methyltransferase)) 

"Opioid-Related 
Disorders"[Mesh] AND 
(CYP2D6 OR (cytochrome 
P450 2D6)) 

(opioid OR (opioids)) AND 
(OPRM1 OR (mu opioid 
receptor)) 

(opioid OR (opioids)) AND (COMT 
OR (catechol-O-methyltransferase)) 
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 "Opioid-Related Disorders"[Mesh] 
AND (OPRM1 OR (mu opioid 
receptor)) 

"Opioid-Related Disorders"[Mesh] 
AND (COMT OR (catechol-O-
methyltransferase))  

 

          

GENE: CYP2D6  

Genetic Test Interpretation 

CYP2D6 genetic variants are typically reported as haplotypes, which are defined by a specific 

combination of single nucleotide polymorphisms (SNPs) and/or other sequence variants 

including insertions and deletions that are interrogated during genotyping analysis. CYP2D6 

haplotypes are assigned a star-allele (*) nomenclature to allow for the standardization of genetic 

polymorphism annotation (2, 3). A complete list of CYP2D6 star allele nomenclature along with 

the genetic variants that define each star allele is available at https://www.pharmvar.org/. 

Information regarding CYP2D6 haplotypes (star alleles) is also available at PharmGKB and 

PharmVar (CYP2D6 Allele Definition Table (1, 4)). Knowing which SNPs or other genetic 

variants a particular test interrogates is important as the inclusion or exclusion of certain genetic 

variants in a pharmacogenetic test could affect the reported star allele result (5, 6).  

 

Reference laboratories usually report a diplotype, which is the summary of inherited maternal 

and paternal star alleles (e.g., CYP2D6*1/*10, where an individual inherited a *1 allele and a 

*10 allele). Commonly reported CYP2D6 star alleles are categorized into clinical functional 

groups (i.e. normal function, decreased function, no function or increased function) based on the 

predicted activity of the encoded enzyme (CYP2D6 Allele Definition Table (1, 4)). The 

predicted phenotype (Table 1, main manuscript) is influenced by the expected function of each 

reported allele in the diplotype. A CYP2D6 genotype to phenotype translation table has been 

developed by CPIC and is updated on an ongoing basis on the CPIC website (1).  

 

Calculating CYP2D6 Activity Score. Gaedigk et al. developed a scoring system to provide a 

uniform approach for assigning a predicted CYP2D6 phenotype (7). The activity value of each 

allele reported in the diplotype is added together to calculate the CYP2D6 activity score. For 

example, to calculate the activity score of a CYP2D6*1/*17 diplotype, the activity value of *1 

(activity value = 1) and the activity value of *17 (activity value = 0.5) are totaled to provide the 

CYP2D6 activity score of 1.5. Note that a value of 0.5 indicates decreased activity and not that 

the activity conveyed by an allele is half of that encoded by a normal function allele.  For this 
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guideline, an updated method to translate CYP2D6 genotype into phenotype is utilized (8). 

CYP2D6 activity scores translate genotype into phenotype as follows: activity score of 0 = poor 

metabolizer, activity scores of 0 < x < 1.25 = intermediate metabolizer, activity scores of 1.25 ≤ x 

≤ 2.25 = normal metabolizer, and activity scores greater than 2.25 = ultrarapid metabolizer. 

Therefore, a pharmacogenetic test result of CYP2D6*1/*17 would result in a CYP2D6 activity 

score of 1.5 and a predicted phenotype of normal metabolizer.  

 

CYP2D6 Structural and Gene Copy Number Variants. Because CYP2D6 is subject to copy 

number variation (gene duplications, multiplications, or deletions), clinical laboratories may 

report gene copy number if directly tested. Most patients will have a normal copy number of 2, 

with one gene copy inherited maternally and one gene copy inherited paternally. When two 

CYP2D6 gene copies are present, the diplotype may be reported as follows: CYP2D6*1/*1 or 

CYP2D6 (*1/*1)2N, where “2N” represents the gene copy number. A copy number of “1” 

indicates the presence of a CYP2D6 gene deletion (the patient possesses only one gene copy), 

and a copy number of “0” indicates both CYP2D6 genes are deleted. CYP2D6 gene deletions are 

indicated by the CYP2D6*5 allele. A gene deletion that is present on one chromosome may be 

reported as follows: CYP2D6*2/*5 or CYP2D6 (*2/*2)1N, where “1N” represents gene copy 

number and the CYP2D6*5 allele is inferred. Typically, clinical laboratories will report a 

homozygous gene deletion as CYP2D6*5/*5 or CYP2D6 (*5/*5)0N.  

 

A copy number greater than two indicates the presence of a CYP2D6 gene duplication or 

multiplication. When a CYP2D6 gene duplication is present, the diplotype may be reported as 

CYP2D6 (*1/*2)3N, where “3N” represents gene copy number. A clinical laboratory may not 

report an exact copy number, but rather indicate that additional copies of the CYP2D6 gene are 

present (e.g., CYP2D6*1/*2 duplication or CYP2D6 (*1/*2)xN). In instances where a 

duplication/multiplication is present, and the exact copy number is not reported, most patients 

will likely have a CYP2D6 gene copy number of 3. However, individuals carrying as many as 13 

CYP2D6 gene copies have been reported (9). Some clinical laboratories may not determine 

which allele is duplicated, therefore when calculating CYP2D6 activity score the duplication 

must be considered for each allele reported in the diplotype (10). For example, a genotype result 

of CYP2D6 (*1/*4)3N indicates a patient has three copies of the CYP2D6 gene, with either two 

copies of the CYP2D6*1 allele and one copy of the CYP2D6*4 allele, or one copy of the 

CYP2D6*1 allele and two copies of the CYP2D6*4 allele. If the CYP2D6*1 allele carries the 
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duplication, the CYP2D6 activity score of this diplotype will be 2 (normal metabolizer), whereas 

if the CYP2D6*4 allele carries the duplication, the activity score will be 1 (intermediate 

metabolizer). Likewise, if the number of gene copies is not determined and it remains unknown 

which allele carries the duplication/multiplication, a CYP2D6 (*1/*10)xN genotype, for example, 

can be consistent with a NM (normal metabolizer) phenotype (CYP2D6*1/*10x2; activity score 

of 1.5 or CYP2D6*1x2/*10, activity score of 2.25) or UM (ultrarapid metabolizer) phenotype (or 

CYP2D6*1x2/*10x2; activity score of 2.5 or CYP2D6*1x3/*10; activity score of 3.25). As these 

examples illustrate, phenotype prediction will be more accurate if testing determines which allele 

carries the duplication/multiplication and the number of gene copies present. Consequences of 

CYP2D6 copy number variation on pharmacotherapy has been reviewed by Jarvis et al. 2019 

(11).  

 

Note that a duplication may not be detected by copy number assays when paired with the 

CYP2D6*5 allele (gene deletion). A CYP2D6*2x2/*5 diplotype, for example, has a gene 

duplication on one allele and a gene deletion on the other for a total number of two gene copies. 

This diplotype may be reported as CYP2D6*2/*2.   

 

Other structural variants include gene copies that consist of CYP2D6 and CYP2D7-derived 

sequences (3, 12, 13). An overview of these variants can also be found in the “Structural 

Variation” document at https://www.pharmvar.org/gene/CYP2D6. The no function CYP2D7-

2D6 hybrid genes, collectively assigned as CYP2D6*13 (14), may not be detected by a particular 

genotype test or gene copy number testing. In such cases the test may detect only the allele 

present on the second chromosome and report the diplotype as homozygous for that allele. For 

example, a test that does not detect CYP2D6*13 will report a CYP2D6*1/*13 diplotype as 

CYP2D6*1/*1. Hybrid genes can also occur in duplication configurations and cause positive 

gene duplication test results that may lead to an overestimation of activity and false-positive 

prediction of ultrarapid metabolism (13, 15). For example, a CYP2D6*1/*13+*2 diplotype 

(activity score = 2 predicting normal metabolism) may be assigned as CYP2D6*1/*2xN (activity 

score ≥ 3 predicting ultrarapid metabolism).      

 

Limitations of the Star (*) Nomenclature and Allele Assignments. The star (*) nomenclature 

has defined multiple suballeles (e.g., CYP2D6*2.001, CYP2D6*4.002), but these are not 

distinguished by current testing. This is of no consequence for CYP2D6*4, because all *4 
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suballeles share 1847G>A causing aberrant splicing and absence of functional protein. For 

CYP2D6*2, however, it is unknown whether any of the sequence variations defining the 

suballeles convey a functional consequence. Also, there is no, or little, information regarding 

their frequencies because test laboratories do not discriminate between the suballeles. In 

addition, there are likely numerous known variants and suballeles that have not been designated 

by PharmVar at this time (investigators and clinical laboratories are encouraged to submit novel 

information to PharmVar).  

 

The accuracy of a genotype test depends on the number of sequence variations/allelic variants 

tested. If no variation is found, a CYP2D6*1 will be the ‘default’ assignment. Depending on 

which sequence variations are found, the allele assignment may vary. For example, if 2851C>T 

is present, but 1022C>T is not, the assignment is CYP2D6*2. In contrast, if 1022C>T is also 

present, the allele would be assigned as *17. Additional examples are provided in the PharmVar 

CYP2D6 GeneFocus paper (3). Also see ‘CYP2D6 Other Considerations’ below.   

 

Note that the SNP positions provided above and below are according to the NG_008376.3 

reference sequence. The M33388 “legacy” sequence contains errors causing certain SNP 

positions to shift by 1-base when mapped to the NG_008376.3 reference sequence. PharmVar 

uses NG_008376.3 as the ‘gold standard’ and strongly encourages the use and reporting of 

positions in respect to NG_008376.3 RefSeq. To facilitate SNP mapping, PharmVar cross-

references positions between NG_008376.3 and M33388 

(https://www.pharmvar.org/gene/CYP2D6).   

 

Recent findings indicate that a SNP in a distal enhancer region impacts allele activity on the 

transcriptional level (16, 17). Specifically, it was reported that CYP2D6*2 alleles lacking the 

enhancer SNP have decreased function. A study by a different found that the enhancer SNP did 

not lead to improved prediction of endoxifen levels in breast cancer patients (18). Furthermore, a 

recent study (19) found that this SNP (rs5758550) can also occur on many other star alleles and 

that the portion of an allele with and without rs5758550 may considerably vary among 

populations. Thus, it remains uncertain whether the effect of this SNP on CYP2D6 activity in 

vivo is of clinical significance. rs5758550 is not included in current test panels or allele 

definitions.  
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Available Genetic Test Options 

Commercially available genetic testing options change over time. Additional information about 

pharmacogenetic testing can be found at the Genetic Testing Registry 

(http://www.ncbi.nlm.nih.gov/gtr/).  

 

Desirable characteristics of pharmacogenetic tests, including naming of alleles and test report 

contents, have been extensively reviewed by an international group, including CPIC members 

(20). CPIC recommends that clinical laboratories adhere to these test reporting standards. CPIC 

gene-specific tables (see CYP2D6 Allele Definition Table, CYP2D6 Allele Functionality 

Table and CYP2D6 Allele Frequency Table (https://cpicpgx.org/guidelines/guideline-for-

codeine-and-cyp2d6/) adhere to these allele nomenclature standards (20). Moreover, the 

CYP2D6 Allele Definition Table, CYP2D6 Allele Functionality Table, and CYP2D6 Allele 

Frequency Table may be used to assemble lists of known functional and actionable 

pharmacogenetic variants and their population frequencies, which may inform decisions as to 

whether tests are adequately comprehensive in interrogations of alleles. Furthermore, the 

Association for Molecular Pathology and College of American Pathologists (CAP) have 

published a joint recommendation for the key attributes of alleles recommended for clinical 

testing and a minimum set of variants that should be included in certain clinical genotyping 

assays (21) and are currently working on a similar paper for CYP2D6.  

 

Clinical laboratories may analyze different sets of SNPs or other genetic variants, which are 

dependent on the genotyping platforms used and may affect the reported diplotype leading to 

discrepant results between methodologies. CYP2D6 is a gene that is subject to duplications and 

deletions in the germline, and thus any genetic test should clearly indicate how copy number 

variants have been assessed, and whether phenotype can be assigned. Additionally, laboratories 

may differ in how CYP2D6 copy number variants are reported, which can potentially affect 

phenotype prediction. Therefore, it is important to not only know the alleles interrogated by each 

laboratory, but also which sequence variants (e.g., SNPs, insertions, or deletions) are tested and 

how copy number variants are reported. Clinical laboratories commonly give an interpretation of 

the genotype result and provide a predicted phenotype. Phenotype assignment for this guideline 

is defined in the main manuscript and supplementary data but may differ from some clinical 

laboratory interpretations. Any CYP2D6 genotyping results used to guide patient 

pharmacotherapy and/or deposited into patient medical records should be derived from validated 
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genotyping platforms in clinical laboratories that implement the appropriate regulatory standards 

and best practices (e.g., CAP, CLIA).   

 

CYP2D6 Other Considerations  

There are several factors that cause potential uncertainty in CYP2D6 genotyping results and 

phenotype predictions as follows: 1) Laboratories providing genetic testing usually ignore the 

contribution of environmental variables such as taking CYP2D6 inhibitors when reporting 

CYP2D6 phenotypes.  2) Because it is currently impractical to test for every variation in the 

CYP2D6 gene, genotyping tests may not detect rare variants resulting in patients being assigned 

a default genotype. It also needs to be stressed that genotyping tests are not designed to detect 

unknown/de novo sequence variations. Depending on the sequence variations (or alleles present) 

in a given patient, the default genotype may be CYP2D6*1/*1 (or wild-type) or another 

diplotype. If the rare or de novo variant adversely affects CYP2D6 enzyme function, then the 

patient’s actual phenotype may differ from the predicted phenotype. 3) Many star alleles have 

several suballeles. As an example, numerous suballeles have been identified for CYP2D6*4 (i.e., 

CYP2D6*4.001, *4.002, *4.003, etc.) which may have additional SNPs which may or may not 

exert a functional change on their own. For CYP2D6*4, there is only a single core SNP, 

1847G>A, that is shared among all suballeles and causes the splice defect rendering this allele 

nonfunctional. Thus, it is sufficient to test for 1847G>A to identify the CYP2D6*4 allele. 4) 

There are multiple gene units involved in duplication and other major rearrangements (3, 11); 

also see the Structural Variation document on the PharmVar CYP2D6 page at 

https://www.pharmvar.org/gene/CYP2D6). Additionally, the pseudogenes CYP2D7 and CYP2D8 

may be misinterpreted as functional duplications (22).  If the specific gene units involved in the 

duplication or other rearrangements are not specifically tested for, the phenotype prediction may 

be inaccurate and CYP2D6 activity over-estimated. 5) Some SNPs exist on multiple alleles. For 

example, CYP2D6*69 carries the core SNPs for CYP2D6*41 (2851C>T, 2989G>A, and 

4181G>C) and the core SNPs for CYP2D6*10 (100C>T and 4181G>C) in addition to multiple 

other SNPs (3). If a patient carries these genetic variants (in the absence of 1847G>A), a 

CYP2D6*10/*41 diplotype is typically assigned, because this is the most likely result based on 

allele frequencies. However, a CYP2D6*1/*69 genotype cannot be excluded with certainty. 

Testing for additional SNPs (e.g., 1061A>G, 3385A>C, and 3585G>A) would need to be 

performed to exclude CYP2D6*1/*69 with certainty. Therefore, to unequivocally determine the 

presence of certain alleles, testing for multiple SNPs may be required. 6) Allele frequencies may 
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vary considerably among individuals of different ancestral backgrounds. For instance, 

CYP2D6*10 is common in Asian populations while CYP2D6*17 is common in people of Sub-

Saharan African ancestry. These alleles, however, have a considerably lower prevalence in other 

ethnic groups such as European ancestry. As another example, CYP2D6*14 is present in Asian 

populations and therefore its core SNP (1759G>A) has been incorporated into Asian genotyping 

panels (23). Thus, the alleles that should be tested for a given population may vary. 7) Certain 

alleles carry genes in tandem arrangements. One such example is CYP2D6*36+*10 (one copy of 

the non-functional CYP2D6*36 and one copy of the decreased function CYP2D6*10).  This 

tandem can be found in Asians and is often reported as (i.e. defaulted to) CYP2D6*10.  8) 

Phenotyping approaches might also be used to measure the combined effects of genetic and 

environmental factors and determine individual metabolic profiles in vivo. These usually involve 

the oral intake of a probe drug followed by the single measurement of the metabolite/probe 

(metabolic ratio) concentration in a plasma, capillary dried blood spot or urine sample (24, 25).  

 

OTHER CONSIDERATIONS 

 

Other genes affecting codeine metabolism and opioid response 

Glucuronidation of codeine and morphine is mediated by the polymorphic UGT2B7 enzyme 

(26). Although the production of morphine-6-glucuronide is almost exclusively catalyzed by 

UGT2B7, several isoforms of the UGT1A subfamily are also involved in the formation of 

morphine-3-glucuronide.  Conflicting evidence exists regarding the impact of the UGT2B7*2 

variant on the glucuronidation of codeine (27). The organic cation transporter OCT1 plays a role 

in hepatocellular uptake of morphine. Patients carrying OCT1 polymorphisms resulting in 

reduced transporter function may be at higher risk of adverse effects after codeine 

administration, especially in patients who are also CYP2D6 ultrarapid metabolizers (28). 

Polymorphisms in the ABCB1 transporter (MDR1) gene also appear to have a modest association 

with opioid dose requirements (29).   

 

Effect of pregnancy on CYP2D6 

Wadelius et al. demonstrated an increase in CYP2D6 activity by measuring 

dextromethorphan/dextrorphan metabolic ratio that was decreased by 53% in pregnancy, while 

Heikkinen et al. demonstrated that the norfluoxetine/fluoxetine metabolic ratio increased 2.4-fold 

(30, 31).  The apparent oral clearance of metoprolol was shown to increase by 4 to 5-fold during 
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pregnancy (32).  Although mean CYP2D6 activity appears to increase during pregnancy, the 

large interindividual variability in the increase and the limited number of subjects studied make it 

difficult to recommend how to adjust the activity scores of functional alleles during pregnancy.  

The CYP2D6 activity scores of nonfunctional alleles are not affected by pregnancy.   

 

Ontogeny of CYP2D6 

Functional CYP2D6 activity is not appreciably expressed in fetal liver, but increases rapidly after 

birth (33). These in vitro data together with in vivo data obtained from a longitudinal 

phenotyping study conducted in the first year of life (34) reveal considerable inter-individual 

variability in CYP2D6 activity within the first 2-4 weeks of life. In the neonatal setting, both 

ontogeny and genetic variation contribute to inter-individual variability in the disposition of 

CYP2D6 substrates and are consistent with functional CYP2D6 activity being acquired 

concurrently with the maturation of other systems, such as renal function (35). Overall, available 

data are consistent with genetic variation being more important than ontogeny as a determinant 

of variability in CYP2D6 activity beyond the first month of postnatal life. Therefore, CYP2D6 

genotype is expected to be equally reliable for inferring phenotype from genotype in children as 

in adults.  

 

DRUG: OPIOIDS 

Background 

Codeine. Codeine is an opioid analgesic indicated for the relief of mild to moderate pain.  The 

opioid active metabolites of codeine, morphine and morphine-6-glucuronide, are the primary 

contributors to codeine analgesia; codeine has a 200-fold lower affinity for µ-opioid receptors 

than does morphine (36, 37).  Both codeine and morphine also have antitussive properties. O-

demethylation of codeine into morphine by CYP2D6 represents a minor pathway in normal 

metabolizers, accounting for 5-10% of codeine clearance in such individuals but appears to be 

essential for its opioid activity.  The percent of codeine converted to morphine can have about a 

50% higher AUC in CYP2D6 ultrarapid metabolizers (38).  Morphine is further glucuronidated 

to morphine-3-glucuronide and morphine-6-glucuronide. Morphine-6-glucuronide has analgesic 

activity in humans, whereas morphine-3-glucuronide is generally not considered to possess 

analgesic properties but has neurotoxic effects. About 80% of an administered dose of codeine is 

converted to inactive metabolites by glucuronidation to codeine-6-glucuronide via UDP-

glucuronosyltransferase (UGT) 2B7, and by N-demethylation to norcodeine via CYP3A4.  The 
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analgesic activity of codeine-6-glucuronide in humans is unknown but likely to be low given its 

weak binding affinity, while norcodeine is thought to have no analgesic properties (37). 

Common adverse reactions to codeine include nausea, vomiting, drowsiness, lightheadedness, 

dizziness, sedation, shortness of breath, constipation, and itching.  Serious adverse reactions 

include respiratory arrest and rare secondary hemodynamic consequences, and cardiac arrest. 

 

Tramadol. Tramadol in its available racemic form is extensively metabolized via a number of 

pathways, including CYP2D6-mediated oxidation to O-desmethyltramadol (M1), which has a 

more than 200-fold higher affinity for µ-opioid receptors compared to the parent drug (36, 39).  

Thus, (+)-O-desmethyltramadol is principally responsible for opioid receptor-mediated 

analgesia, whereas (+)- and (-)-tramadol contribute to analgesia by inhibiting reuptake of the 

neurotransmitters serotonin and noradrenaline. Tramadol is used both in patients with 

nociceptive and neuropathic pain.  

 

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE 

The evidence summarized in Supplemental Tables S1-S4 is graded (40) on a scale of high, 

moderate, and weak, based upon the level of evidence: 

High: Evidence includes consistent results from well-designed, well-conducted studies. 

Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is 

limited by the number, quality, or consistency of the individual studies, generalizability 

to routine practice, or indirect nature of the evidence. 

Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, gaps in 

the chain of evidence, or lack of information. 

 

Every effort was made to present evidence from high-quality studies, which provided the 

framework for the strength of therapeutic recommendations (Table 2, main manuscript). 

 

STRENGTH OF RECOMMENDATIONS  

CPIC’s therapeutic recommendations are based on weighing the evidence from a combination of 

preclinical functional and clinical data, as well as on some existing disease-specific consensus 

guidelines. Some of the factors that are taken into account in evaluating the evidence supporting 

therapeutic recommendations include: in vivo pharmacokinetic and pharmacodynamic data, in 
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vitro enzyme activity of tissues expressing wild-type or variant-containing CYP2D6, in vitro 

CYP2D6 enzyme activity from tissues isolated from individuals of known CYP2D6 genotypes, 

and in vivo pre-clinical and clinical pharmacokinetic and pharmacodynamic studies.  

 

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for just three 

categories for recommendations adopted from the rating scale for evidence-based 

recommendations on the use of antiretroviral agents (41):  

 

Strong recommendation for the statement: “The evidence is high quality and the desirable 

effects clearly outweigh the undesirable effects.” 

Moderate recommendation for the statement: “There is a close or uncertain balance” as to 

whether the evidence is high quality and the desirable clearly outweigh the undesirable effects. 

Optional recommendation for the statement: The desirable effects are closely balanced with 

undesirable effects, or the evidence is weak or based on extrapolations. There is room for 

differences in opinion as to the need for the recommended course of action. 

No recommendation: There is insufficient evidence, confidence, or agreement to provide a 

recommendation to guide clinical practice at this time 

 

RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC 

HEALTH RECORD WITH CLINICAL DECISION SUPPORT  

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) can 

help guide clinical pharmacogenetics at the point of care (42-46).  Resources to support the 

adoption of CPIC guidelines within an EHR are available on the CPIC website (1, 47).  Based on 

the capabilities of various EHRs and local preferences, we recognize that approaches may vary 

across organizations. Our intent is to synthesize foundational knowledge that provides a common 

starting point for incorporating CYP2D6 genotype results in an EHR to guide opioid use.   

 

Effectively incorporating pharmacogenetic information into an EHR to optimize drug therapy 

should have some key attributes.  Pharmacogenetic results, an interpreted phenotype, and a 

concise interpretation or summary of the result must be documented in the EHR (48). To 

incorporate a phenotype in the EHR in a standardized manner, genotype test results provided by 

the laboratory must be consistently translated into an interpreted phenotype (Table 1, main 
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manuscript; CYP2D6 Diplotype to Phenotype Table (1, 4)). Because clinicians must be able 

to easily find the information, the interpreted phenotype may be documented as a problem list 

entry or in a patient summary section; these phenotypes are best stored in the EHR at the “person 

level” rather than at the date-centric “encounter level”.  Additionally, results should be entered as 

standardized and discrete terms to facilitate using them to provide point-of-care CDS (see 

Codeine and Tramadol Pre- and Post-Test Alerts and Flow Chart for example CDS alerts; 

(1, 4, 49, 50).  

 

Because pharmacogenetic results have lifetime implications and clinical significance, results 

should be placed into a section of the EHR that is accessible independent of the test result date to 

allow clinicians to quickly find the result at any time after it is initially placed in the EHR.  To 

facilitate this process, CPIC is providing gene-specific information figures and tables that 

include full diplotype to phenotype tables, diagram(s) that illustrate how CYP2D6 

pharmacogenetic test results could be entered into an EHR, example EHR consultation/genetic 

test interpretation language and widely used nomenclature systems (see (1, 46)). Point-of-care 

CDS should be designed to effectively notify clinicians of prescribing implications at any time 

after the test result is entered into the EHR. CPIC is also providing gene-drug specific tables that 

provide guidance to achieve these objectives with diagrams that illustrate how point-of-care CDS 

should be entered into the EHR, example pre- and post-test alert language, and widely used 

nomenclature systems for relevant drugs (1). 
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SUPPLEMENTAL TABLE S1. EVIDENCE LINKING CYP2D6 PHENOTYPE OR GENOTYPE WITH OPIOID 

METABOLISM OR RESPONSE. 

Type of 
experimental model 
(in vitro, in vivo 
preclinical, or 
clinical)  

Major findings  References Level of 
Evidencea 

Codeine 

In vitro Decreased Vmax and higher apparent Km for codeine O-
demethylation to morphine in human liver microsomes with 
PM phenotype by dextromethorphan metabolism versus NM 
phenotype 

Dayer, et al. 1988 (51) High 

In vitro Less morphine formation from codeine O-demethylation in 
human liver microsomes with PM phenotype by 
dextromethorphan versus NM phenotype 

Mortimer, et al. 1990 (52) High 

In vitro Higher apparent Km for codeine O-demethylation to morphine 
in microsomes prepared from yeast cells expressing human 
CYP2D6*17 versus normal function. 

Oscarson, et al. 1997 (53) High 

In vitro Decreased Vmax for codeine O-demethylation to morphine in 
microsomes prepared from insect cells expressing human 
CYP2D6 decreased-function alleles versus *1 alleles 

Yu, et al. 2002 (54) 
Shen, et al. 2007 (55) 
Zhang, et al. 2009 (56) 

High 

Preclinical No analgesia observed in rats deficient for CYP2D1, a 
homolog for CYP2D6 in humans, after codeine administration 

Cleary, et al. 1994 (57) High 

Clinical Reduced or no analgesia observed in CYP2D6 PM phenotype 
by drug metabolism assay 

Sindrup, et al. 1990 (58) 
Desmeules, et al. 1991 (59) 
Poulsen, et al. 1996 (60) 
Eckhardt, et al. 1998   

High 

Clinical Decreased analgesia from codeine observed in CYP2D6 PMs 
by genotype 

Persson, et al. 1995 (61) 
Fagerlund, et al. 2001 (62) 
Foster, et al. 2007 (63) 

Moderate 
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VanderVaart, et al. 2011 (64) 
Shaw, et al. 2012 (65) 

Clinical No statistical difference of analgesia between CYP2D6 
genotypes after codeine administration 

Williams, et al. 2002 (66) 
Vree, et al. 2000 (67) 

High 

Clinical CYP2D6 decreased function alleles are more likely to be found 
in sickle cell disease patients who have failed codeine therapy 
compared to those who respond to codeine 

Brosseau, et al. 2007 (68) Moderate 

Clinical CYP2D6-guided prescribing of codeine results in improved 
analgesia and is beneficial to patients with IM (AS = 0.5) or 
PM (AS = 0) phenotypes as compared to standard prescribing 

Smith, et al. 2019 (69) Moderate 

Clinical CYP2D6-guided prescribing of codeine in patient with 
CYP2D6 NM (AS = 1.0-2.0) phenotypes does not result in a 
difference in analgesia as compared to standard prescribing 

Smith, et al. 2019 (69) High 

Clinical CYP2D6 PM and IM (AS 0.5) phenotypes  are associated with 
lack of analgesic response to codeine 

Radford, et al. 2019 (70) Moderate 

Clinical No statistical difference of codeine dose requirements for 
postoperative pain between CYP2D6 genotypes. 

Baber, et al. 2015 (71) Moderate 

Clinical The CYP2D6 PM phenotype is associated with reduced 
likelihood of developing opioid dependence 

Tyndale, et al. 1997 (72) Moderate 

Clinical CYP2D6 IM phenotype by drug metabolism assay associated 
with lower formation or excretion of morphine and related 
metabolites following codeine administration versus NM 
phenotype 

Chen, et al. 1988 (73) 
Vevelstad, et al. 2009 (74) 

High 

Clinical No significant difference in plasma concentration of morphine 
and related metabolites in IM (AS = 1.0) genotypes versus NM 
(AS = 2.0) genotype 

Lotsch, et al. 2006 (75) 
Williams, et al. 2002 (66) 
Frost, et al. 2016 (76) 

High 

Clinical CYP2D6 PM genotype associated with reduced formation or 
excretion of morphine and related metabolites following 
codeine administration 

Tseng, et al. 1996 (77) 
Eckhardt, et al. 1998 (78) 
Williams, et al. 2002 (66) 
Lotsch, et al. 2009 (29) 
Molanaei, et al. 2010 (79) 

High 
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Clinical CYP2D6 PM phenotype by drug metabolism assay associated 
with lower formation or excretion of morphine and related 
metabolites following codeine administration versus NM 
phenotype 

Chen, et al. 1988 (73) 
Yue, et al. 1989 (80) 
Sindrup, et al. 1990 (58) 
Chen, et al. 1991 (81) 
Desmeules, et al. 1991 (59) 
Caraco, et al. 1996 (82) 
Poulsen, et al. 1996 (60) 
Caraco, et al. 1997 (83) 
Hasselstrom, et al. 1997 (84) 
Hedenmalm, et al. 1997 (85) 
Mikus, et al. 1997 (86) 
Poulsen, et al. 1998 (87) 
Eckhardt, et al. 1998 (78) 
Lötsch, et al. 2006 (75) 
Yue, et al. 1997 (88) 
Haffen, et al. 2000 (89) 
Frost, et al. 2016 (76) 
  

High 

Clinical Low morphine formation following codeine administration in 
PM predicted by CYP2D6 genotyping or dextromethorphan-
based phenotyping 

Lötsch, et al. 2009 (29) High 

Clinical Higher plasma concentrations of morphine and related 
metabolites following codeine administration in healthy 
volunteers with CYP2D6 gene duplication (> 2 functional 
alleles) than in carriers of 2 functional CYP2D6 alleles 

 Kirschheiner, et al. 2007 (90) High 

Clinical High morphine formation in UM predicted by 
dextromethorphan-based phenotyping and/or CYP2D6 
genotyping for allele multiplication 

Lotsch, et al. 2009 (29) 
He, et al. 2008 (91) 
Yue, et al. 1997 (88) 

High 

Clinical Rifampin induced codeine metabolism to morphine in NM but 
not PM phenotype by drug metabolism assay 

 Caraco, et al. 1997 (83) High 
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Clinical Patients with variant CYP2D6 alleles (*7, *29, *41) had 
significantly lower excretion of morphine and related 
metabolites after codeine vs those without variant alleles 

Shord, et al. 2009 (92) 
Chen, et al. 1991 (81) 

High 

Clinical Heterozygous NMs (*1/*4) associated with lower urinary 
excretion of morphine and related metabolites following 
codeine and paracetamol or levomepromazine with codeine 
and paracetamol administration versus homozygous NMs 
(*1/*1) 

Vevelstad, et al. 2009 (74) High 

Clinical CYP2D6*17 allele has higher activity in codeine metabolism 
compared to in metabolism of debrisoquine or 
dextromethorphan 

Wennerholm, et al. 2002 (93) Moderate 

Clinical Increased codeine metabolic ratio in CYP2D6*29/*29 
compared to CYP2D6 genotypes comprised of the *1 and/or *2 
alleles 

Wennerholm, et al. 2002 (93) Weak 

Clinical Cmax and AUC of morphine formed from codeine decreases as 
the number of CYP2D6*10 alleles increases 

Wu, et al. 2014 (94) High 

Clinical Morphine/codeine concentration ratio increases as a patient's 
CYP2D6 activity score increases 

Lam, et al. 2014 (95) Weak 

Clinical CYP2D6 PM phenotype by drug metabolism assay associated 
with reduced opioid associated adverse effects following 
codeine administration versus NM phenotype 

Caraco, et al. 1996 (82) 
Mikus, et al. 1997 (86) 

High 

Clinical CYP2D6 PM phenotype by drug metabolism assay no 
difference in adverse effect profile in PM versus NM following 
codeine administration 

Hasselstrom, et al. 1997 (84) 
Eckhardt, et al. 1998 (78) 

High 

Clinical Greater incidence of sedation following codeine administration 
in healthy volunteers with an UM genotype versus those with a 
NM genotype 

Kirchheiner, et al. 2007 (90) High 
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Clinical Increased opioid related adverse events, including fatal 
toxicity, observed in CYP2D6 UMs by genotype following 
normal doses of codeine 

VanderVaart, et al. 2011 (64) 
Dalen, et al. 1997 (96) 
Gasche, et al. 2004 (38)  
Ciszkowski, et al. 2009 (97) 
Kelly, et al. 2012 (98) 

Moderate 

Clinical Increased opioid-related adverse events, including fatal 
toxicity, in infants breastfed by a CYP2D6 UM mother 

Koren, et al. 2006 (99) 
Madadi, et al. 2009 (100) 
Friedrichsdorf, et al. 2013 (101) 
Madadi, et al. 2007 (102) 
Sistonen, et al. 2012 (103) 

Moderate 

Clinical Severe opioid related adverse events, including respiratory 
depression and hypoxia, observed in children with NM 
genotype after receiving codeine 

Kelly, et al. 2012 (98) 
Friedrichsdorf, et al. 2013 (101) 
Voronov, et al. 2007 (104) 

Weak 

Clinical CYP2D6 genotype was not a predictor of changes in 
respiratory parameters in pediatric patients receiving codeine 

 Khetani, et al. 2012 (105) Weak 

Clinical The CYP2D6*4/*6 genotype is associated with codeine 
intolerance 

Susce, et al. 2006 (106) Weak 

Clinical No significant difference of risk of codeine-induced sedation 
between CYP2D6 phenotypes (PM = 0-0.5, IM = 1.0, NM = 
1.5-2.0, UM ≥ 3) 

Prows, et al. 2014 (107) High 

Clinical The risk of codeine-induced adverse events increases as the 
number of normal function CYP2D6 alleles in a patient 
increases 

Prows, et al. 2014 (107) High 

Clinical No significant difference in codeine-related side effects 
between CYP2D6 genotypes. 

Radfrod, et al. 2019 (70) Moderate 

Dihydrocodeine 
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In vitro Decreased Vmax and increased Km for dihydrocodeine O-
demethylation and increased Vmax and decreased Km for 
dihydrocodeine N-demethylation in human liver microsomes 
with the *4/*4 genotype compared to microsomes with a NM 
genotype or phenotype 

Kirkwood, et al. 1997 (108) Moderate 

Clinical No significant difference in dihydrocodeine Cmax, AUC, half-
life or clearance between CYP2D6 NM and PM phenotypes as 
determined by drug metabolism assay. 

Fromm, et al. 1995 (109) Moderate 

Clinical CYP2D6 NM phenotype by drug metabolism assay 
significantly increased Cmax and AUC of dihydromorphine 
and increased metabolic clearance of dihydrocodeine to 
dihydromorphine compared to the PM phenotype. 

Fromm, et al. 1995 (109) Moderate 

Clinical CYP2D6*1/*10-*36 genotype is not associated with 
dihydrocodeine toxicity 

Shimizu, et al. 2018 (110) Weak 

Ethylmorphine 

In vitro Low rate of O-deethylation of ethylmorphine in human liver 
microsomes with PM genotypes. 

Liu, et al.1995 (111) Moderate 

Clinical CYP2D6 *1/*3 and *1/*5 genotypes are associated with low 
concentrations of excreted ethylmorphine metabolites 

Aasmundstad, et al. 1995 (112) Weak 

Fentanyl 

Clinical CYP2D6 *10/*10 genotype associated with increased fentanyl 
consumption and reduced analgesia from fentanyl for 
postoperative pain compared to *1/*1 

Wu, et al. 2015 (113) Moderate 

Clinical CYP2D6 *1/*10 genotype is not associated with fentanyl 
consumption or analgesic effect fentanyl for postoperative pain 
compared to *1/*1 

Wu, et al. 2015 (113) Moderate 

Clinical The CYP2D6 PM phenotype, identified by drug metabolism 
assay or genotyping, is associated with reduced likelihood of 
developing opioid dependence 

Tyndale, et al. 1997 (72) Weak 
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Clinical CYP2D6 *1/*9 and *1/*29 genotypes are associated with 
decreased clearance of fentanyl 

Grimsrud, et al. 2019 (114) Weak 

Hydrocodone 

In vitro Negligible rate of formation of hydromorphone from 
hydrocodone in human liver microsomes with CYP2D6 PM 
genotypes as compared to microsome with NM genotypes. 

Otton, et al. 1993 (115) 
Hutchinson, et al. 2004 (116) 

Moderate 

Clinical The CYP2D6 *5/*17 genotype is observed in patient with lack 
of response to hydrocodone in patients taking a concomitant 
CYP2D6 inhibitor 

Tillman, et al. 2019 (117) Weak 

Clinical Increased Cmax of hydromorphone and decreased excretion of 
unchanged hydrocodone in subjects with CYP2D6 NM  
compared to those with PM determined by drug metabolism 
assay. 

Otton, et al. 1993 (115) High 

Clinical CYP2D6 PM phenotype by drug metabolism assay is 
associated with reduced formation of hydromorphone from 
hydrocodone compared to NM phenotype 

Kaplan, et al. 1997 (118) Moderate 

Clinical CYP2D6 PM genotypes are associated with reduced formation 
of hydromorphone from hydrocodone compared to NM 
genotypes. 

Stauble, et al. 2014 (119) High 

Clinical CYP2D6 PMs by genotyping are associated with increased 
norhydrocodone concentrations as compared to NMs and UMs 

Stauble, et al. 2014 (119) High 

Clinical Increase in 'good' subjective drug effects and reduced 'bad' 
effects from hydrocodone in subjects with NM  compared to 
those with PM as determined by drug metabolism assay. 

Otton, et al. 1993 (115) Weak 

Clinical CYP2D6 phenotype by drug metabolism assay is not 
associated with effects of hydrocodone in healthy subjects 

Kaplan, et al. 1997 (118) Moderate 

Clinical Dysphoria observed in a patient with the *1/*2xN genotype 
following administration of hydrocodone 

de Leon, et al. 2003 (120) Weak 

Clinical Hydrocodone is well tolerated by subjects with the *4/*4 or 
*4/*6 genotypes 

Susce, et al. 2006 (106) 
Foster, et al. 2007 (63) 

Weak 
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Clinical CYP2D6*2/*41 genotype is associated with fatal hydrocodone 
toxicity 

Madadi, et al. 2010 (121) Weak 

Clinical Adverse events, including nausea and vomiting, observed in a 
subject with the CYP2D6*4/*4 genotype 

Foster, et al. 2007 (63)  Moderate 

Methadone 

Clinical CYP2D6 UMs by genotype are more likely to require an 
increased dose of methadone in methadone maintenance 
therapy compared to PMs 

Eap, et al. 2001 (122) 
Fonseca, et al. 2011 (123) 

Weak 

Clinical CYP2D6*4/*4 genotype is associated with increased 
methadone doses in methadone maintenance therapy 

Levran, et al. 2013 (124) Weak 

Clinical CYP2D6*41/*41 genotype is associated with increased 
methadone doses in methadone maintenance therapy 

Levran, et al. 2013 (124) Weak 

Clinical No statistical differences of methadone maintenance dose in 
methadone maintenance therapy between CYP2D6 copy 
number 

Mouly, et al. 2015 (125) Weak 

Clinical CYP2D6 PMs by genotype are more likely to adhere to 
methadone maintenance therapy as compared to UMs 

Eap, et al. 2001 (122) Weak 

Clinical No statistical difference in opioid cessation rates between 
CYP2D6 genotypes in patients receiving methadone 
maintenance therapy 

Victorri-Vigneau, et al. 2019 (126) Weak 
 

Clinical No significant differences of levomethadone drug effects  
between CYP2D6 genotypes (PM = 0, IM = if *41 allele is 
present and AS =0.5-1.0, UM = ≥3) 

Lötsch, et al. 2006 (127) Weak 

Clinical CYP2D6 UM genotypes are associated with decreased 
satisfaction with methadone maintenance therapy 

Perez de los Cobos, et al. 2007 
(128) 

Weak 

Clinical Increased methadone concentration:dose ratios in CYP2D6 
PMs (AS = 0) by genotype compared to NMs (AS = 1.0-2.0) 

Eap, et al. 2001 (122) Weak 

Clinical Decreased methadone concentration:dose ratios in CYP2D6 
UMs (AS ≥3) by genotype compared to NMs (AS = 1.0-2.0) 

Eap, et al. 2001 (122) Weak 
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Clinical CYP2D6 UM genotypes are associated with decreased trough 
concentrations of (S)- and (R)-methadone compared to NMs 
and IMs 

Crettol, et al. 2006 (129) Weak 

Clinical No effect of CYP2D6 genotype (PM = 0, IM = if *41 allele is 
present and AS =0.5-1.0, NM = 1.0-2.0, UM = ≥3) on 
concentrations or clearance of methadone. 

Lötsch, et al. 2006 (127) 
Crettol, et al. 2006 (129) 
Uehlinger, et al. 2007 (130) 
Coller, et al. 2007 (131) 
Shiran, et al. 2009 (132) 
Fonseca, et al. 2011 (123) 
Kringen, et al. 2017 (133) 
Victorri-Vigneau, et al. 2019 (126) 

Moderate  

Clinical CYP2D6 UM (AS ≥3 or presence of a promoter mutation) 
genotypes are associated with increased concentrations of both 
methadone enantiomers as compared to NMs (1.0-2.0) 

Fonseca, et al. 2011 (123) Weak 

Morphine 

Clinical CYP2D6 UMs by genotyping are associated with low 
morphine dose requirements 

Candiotti, et al. 2009 (134) Weak 

Clinical No statistical differences of morphine consumption between 
CYP2D6 NMs, IMs and PMs by genotyping  

Candiotti, et al. 2009 (134) Moderate 

Clinical Increased morphine-6-glucuronide concentrations as a result of 
morphine administration in PM subject by drug metabolism 
assay compared to NMs 

Heiskanen, et al. 2000 (135) Weak 

Opioids 
Clinical Adverse events, including nausea and vomiting, observed in a 

subject with the CYP2D6*4/*4 genotype (hydrocodone, 
hydromorphone, morphine, oxycodone) 

Foster, et al. 2007 (63) Weak 

Clinical CYP2D6 NMs and IMs by genotyping are associated with 
increased analgesia from opioids to treat postoperative pain 
(morphine, tramadol) 

Seripa, et al. 2015 (136) Weak 
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Clinical PGx-guided prescription of opioids using a multi-gene panel 
results in improved analgesia and decreased dose requirements 
as compared to current standard of prescribing (unspecified 
opioids) 

Senagore, et al. 2017 (137) 
Fulton, et al. 2019 (138) 

Weak  

Clinical Opioid consumption increases as CYP2D6 activity score 
increases 

Rocco, et al. 2019 (139) Weak 

Clinical No statistical differences of opioid dose requirements between 
CYP2D6 PM and non-PM phenotypes (buprenorphine, 
dihydrocodeine, fentanyl, hydromorphone, (R)-methadone, 
morphine, oxycodone, piritramide, tilidine, tramadol) 

Lötsch, et al. 2009 (29) Weak 

Clinical No statistical differences of severity of neonatal abstinence 
syndrome between CYP2D6*6 alleles and CYP2D6*1 
(unspecified opioids) 

Mactier, et al. 2017 (140)  Weak 

Clinical No statistical differences of severity of neonatal abstinence 
syndrome between the number of functional CYP2D6 alleles 
(unspecified opioids) 

Mactier, et al. 2017 (140) Moderate 

Clinical No statistical differences of the risk of developing opioid 
dependence between CYP2D6 rs1065852 carriers and non-
carriers (unspecified opioids) 

Christoffersen, et al. 2016 (141) Weak 

Clinical No statistical differences of opioid-induced adverse events 
between CYP2D6 PM and non-PM phenotypes 
(buprenorphine, dihydrocodeine, fentanyl, hydromorphone, 
(R)-methadone, morphine, oxycodone, piritramid, tilidine, 
tramadol) 

Lötsch, et al. 2009 (29) Moderate 

Clinical CYP2D6 *2/*2 genotype is not associated with opioid-induced 
respiratory depression (fentanyl, hydromorphone, morphine) 

Madadi, et al. 2013 (142) Weak 

Oxycodone 

Clinical CYP2D6 PMs by drug metabolism assay have greater pain 
intensity and require more escape analgesia when treated with 
oxycodone than when treated with morphine 

Heiskanen, et al. 2000 (135) Weak 
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Clinical Oxycodone has an analgesic effect in subjects with CYP2D6 
NM (AS = 1.0-2.0) or PM (AS = 0-1.0) genotypes or 
phenotypes by drug metabolism assay 

Zwisler, et al. 2009 (143) High 

Clinical CYP2D6 UM (AS = 1.5-≥3) phenotype by genotyping or drug 
metabolism assay is associated with increased analgesic effects 
of oxycodone as compared to NMs (AS = 1.0-2.0) 

Samer, et al. 2010 (144)  Moderate 

Clinical CYP2D6 PM (AS = 0-1.0) genotype is associated with 
decreased analgesic effects of oxycodone as compared to NMs 
(AS = 1.0-2.0) 

Susce, et al. 2006 (106) 
Zwisler, et al. 2009 (143) 
Samer, et al. 2010 (144) 

Moderate 

Clinical CYP2D6 PM (AS = 0-1.0) phenotype by genotyping is 
associated with decreased analgesic effects of oxycodone as 
compared to NMs (AS = 1.0-2.0) 

Zwisler, et al. 2009 (143) 
Samer, et al. 2010 (144) 

Moderate 

Clinical No statistical differences of opioid-induced adverse events 
between CYP2D6 genotypes (PM = 0, NM = 1.0-2.0, UM ≥3)  

Andreassen, et al. 2012 (145) Moderate 

Clinical No statistical differences of oxycodone consumption in 
CYP2D6 PM (AS = 0-1.0) genotypes as compared to NM (AS 
= 1.0-2.0) genotypes 

Zwisler, 2010, et al. 2010 (146) 
Naito, et al. 2011 (147) 

High 

Clinical CYP2D6 PM (AS = 0) genotype is associated with increased 
oxycodone consumption to treat postoperative pain as 
compared to other phenotypes (IM = 0.5-1.0, NM = 1.5-2.0, 
UM ≥3) 

Stamer, et al. 2013 (148) Weak 

Clinical CYP2D6 PMs by genotyping or drug metabolism assay are 
associated with reduced likelihood of developing opioid 
dependence 

Tyndale, et al. 1997 (72) Moderate 

Clinical CYP2D6 PMs by drug metabolism assay are associated with 
increased exposure to oxycodone and noroxycodone as 
compared to NMs 

Heiskanen, et al. 2000 (135) 
Samer, et al. 2010 (149)  

Weak 
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Clinical CYP2D6 PM (AS = 0-1.0) genotypes are associated with 
decreased exposure to oxymorphone as compared to the NM 
phenotype (AS = 1.0-2.0) 

Zwisler, et al. 2009 (143) 
Zwisler, et al. 2010 (146) 
Samer, et al. 2010 (149) 
Stamer, et al. 2013 (148) 
Andreassen, et al. 2012 (145) 
Balyan, et al. 2017 (150)  

High 

Clinical CYP2D6 PM (AS = 0) genotypes are associated with decreased 
exposure to noroxymorphone as compared to the NM (AS = 
1.0-2.0) phenotype 

Samer, et al. 2010 (149) 
Stamer, et al. 2013 (148) 
Andreassen, et al. 2012 (145)  

High 

Clinical CYP2D6 PMs by drug metabolism assay are associated with 
decreased exposure to oxymorphone and noroxymorphone as 
compared to the NM phenotype 

Zwisler, et al. 2009 (143) 
Samer, et al. 2010 (149)  

High 

Clinical No statistical differences of oxycodone concentrations between 
CYP2D6 genotypes (PM = 0-0.5, IM = 0.25-1.0, NM = 1.0-2.0, 
UM = ≥3) 

Zwisler, et al. 2010 (146) 
Naito, et al. 2011 (147) 
Andreassen, et al. 2012 (145) 
Balyan, et al. 2017 (150)  

High 

Clinical CYP2D6 UM genotypes are associated with increased 
formation of oxymorphone from oxycodone 

Gronlund, et al. 2010 (151) 
Liukas, et al. 2011 (152) 
Stamer, et al. 2013 (148) 

Weak 

Clinical CYP2D6 UM genotypes are associated with decreased AUC of 
oxycodone 

Gronlund, et al. 2010 (151) Weak 

Clinical CYP2D6 UM genotypes are associated with decreased 
formation of noroxycodone from oxycodone 

Gronlund, et al. 2010 (151) 
Samer, et al. 2010 (149)  

Weak 

Clinical CYP2D6 UMs by drug metabolism assay are associated with 
decreased formation of noroxycodone from oxycodone 

Samer, et al. 2010 (149) Weak 

Clinical CYP2D6 UM (AS ≥3) phenotype by genotyping or drug 
metabolism assay is associated with an increase in Cmax of 
noroxymorphone and a decreased half-life of noroxymorphone 
as compared to the NM (AS = 1.0-2.0) phenotype 

Samer, et al. 2010 (149) Weak 
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Clinical No statistical differences of noroxycodone concentrations 
between CYP2D6 genotypes (PM = 0, IM = 0.5-1.0, NM = 1.0-
2.0, UM ≥3). 

Samer, et al. 2010 (149) 
Naito, et al. 2011 (147) 
Andreassen, et al. 2012 (145)  

Moderate 

Clinical No statistical differences of noroxycodone concentrations 
between CYP2D6 phenotypes by drug metabolism assay. 

Samer, et al. 2010 (149) Moderate 

Clinical CYP2D6 genotype is not associated with noroxymorphone 
concentrations 

Stamer, et al. 2013 (148) High 

Clinical CYP2D6 IM (AS = 0.25-1.0) genotypes are associated with 
reduced formation of oxymorphone from oxycodone compared 
to NMs (AS = 1.0-2.0) 

Naito, et al. 2011 (147) 
Balyan, et al. 2017 (150)  

High 

Clinical Dysphoria in a patient with the CYP2D6*1/*2xN genotype 
following administration of oxycodone 

de Leon, et al. 2003 (120) Weak 

Clinical The CYP2D6*4/*4 and *4/*6 genotypes are associated with 
nausea and vomiting following oxycodone administration 

Susce, et al. 2006 (106) 
Foster, et al. 2007 (63) 
  

Weak 

Clinical No statistical differences of incidence of adverse effects, 
including death, following oxycodone administration between 
CYP2D6 genotypes (PM = 0-1.0 IM = 1.0, NM = 1.0-2.0). 

Jannetto, et al. 2002 (153) 
Zwisler, et al. 2009 (143) 
Andreassen, et al. 2012 (145) 
Slanar, et al. 2012 (154)  

Moderate 

Clinical No statistical differences of incidence of adverse effects, 
including death, following oxycodone administration between 
CYP2D6 NMs and PMs by drug metabolism assay.  

Zwisler, et al. 2009 (143) Moderate 

Clinical Increased CYP2D6 activity is associated with increased 
incidence of sedation, respiratory depression and psychomotor 
effects resulting from oxycodone administration 

Samer, et al. 2010 (144) Weak 

Clinical Maternal CYP2D6 genotype is not associated with incidence of 
oxycodone-induced CNS depression in breastfed infants 

Karthikeyan, et al. 2014 (155) Weak 

Tramadol 
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In vitro CYP2D6*10 and *17 alleles are associated with decreased 
Vmax leading to a decreased intrinsic clearance of tramadol 
compared to *1 

Shen, et al. 2007 (55) Moderate 

Clinical Decreased analgesia in CYP2D6 PMs by drug metabolism 
assay compared to IMs, NMs and UMs as a result of tramadol 
treatment 

Poulsen, et al. 1996 (39) 
Enggaard, et al. 2006 (156)  

Moderate 

Clinical Decreased analgesia in CYP2D6 PMs (AS = 0) by genotyping 
compared to IMs (AS = 0.5-2.0), NMs (AS = 2.0) and UMs 
(AS ≥3) as a result of tramadol treatment 

Susce, et al. 2006 (106) 
Stamer, et al. 2007 (157)  

Moderate 

Clinical CYP2D6 PM (AS = 0) genotypes are more likely to require 
rescue analgesia for postoperative pain when treated with 
tramadol compared to IM (AS = 0.5-2.0), NM (AS = 2.0) and 
UM (AS ≥3) genotypes 

Stamer, et al. 2003 (158) 
Stamer, et al. 2007 (157)  

High 

Clinical No statistical differences of analgesia following tramadol 
treatment between CYP2D6 phenotypes by drug metabolism 
assay.  

Wilder-Smith, et al. 2005 (159) Weak 

Clinical No statistical differences of analgesia following tramadol 
treatment between CYP2D6 phenotypes by genotyping (PM = 
0, NM = 1.0-2.0, UM = 2.0-≥3). 

Kirchheiner, et al. 2008 (160) Weak 

Clinical CYP2D6 PM genotypes are associated with an increased 
analgesic effect of tramadol in treating postoperative pain as 
compared to other CYP2D6 genotypes 

Slanar, et al. 2012 (154) Weak 

Clinical CYP2D6 UM genotypes are associated with a decreased 
analgesic effect of tramadol in treating postoperative pain as 
compared to other CYP2D6 genotypes 

Slanar, et al. 2012 (154) Weak 

Clinical CYP2D6 genotype is not associated with the need for rescue 
analgesia in tramadol treatment of postoperative pain 

Slanar, et al. 2012 (154) Weak 

Clinical CYP2D6*2 allele is not associated with response to tramadol Nasare, et al. 2016 (161) Weak 

Clinical Presence of the CYP2D6*10 allele associated with lack of 
response to tramadol for postoperative pain 

Zhao, et al. 2014 (162) Weak 
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Clinical CYP2D6*10/*10 genotype is associated with decreased 
analgesic effect of tramadol for postoperative pain as compared 
to *1/*1 

Dong, et al. 2015 (163) Weak 

Clinical CYP2D6*10/*10 genotype is not associated with analgesic 
effect of tramadol for postoperative pain 

Dong, et al. 2015 (163) Weak 

Clinical CYP2D6-guided prescribing of tramadol results in improved 
analgesia and is beneficial to CYP2D6 IMs (AS = 0.5) and 
PMs (AS = 0) by genotype plus use of CYP2D6 inhibitors as 
compared to standard prescribing 

Smith, et al. 2019 (69) Moderate 

Clinical CYP2D6-guided prescribing of tramadol in CYP2D6 NMs (AS 
= 1.0-2.0) by genotyping plus use of CYP2D6 inhibitors does 
not result in a difference in analgesia as compared to standard 
prescribing 

Smith, et al. 2019 (69) Moderate 

Clinical The CYP2D6 *5/*17 genotype  observed in patient with lack of 
response to tramadol in patients taking a concomitant CYP2D6 
inhibitor 

Tillman, et al. 2019 (117) Weak 

Clinical CYP2D6 PMs by genotyping require increased tramadol doses 
compared to NMs 

Stamer, et al. 2003 (158) Moderate 

Clinical CYP2D6 PM phenotypes by drug metabolism assay associated 
with decreased doses of tramadol compared to genotypes 
containing functional CYP2D6 alleles 

Wilder-Smith, et al. 2005 (159) Weak 

Clinical No statistical difference in dose between CYP2D6 PM and 
non-PM phenotypes. 

Lötsch, et al. 2009 (29) Weak 

Clinical Tramadol consumption is significantly increased in 
postoperative patients with the *10/*10 genotype compared to 
*1/*1 and *1/*10 

Wang, et al. 2006 (164) 
Dong, et al. 2015 (163)  

Moderate 

Clinical No statistical differences of analgesia and tramadol dose 
requirements following tramadol treatment between CYP2D6 
phenotypes by drug metabolism assay  

Halling, et al. 2008 (165) Weak 
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Clinical No statistical differences of tramadol dose requirements 
between CYP2D6 genotypes.  

Slanar, et al. 2012 (154) Weak 

Clinical CYP2D6*1/*10 genotype is not associated with consumption 
of tramadol for postoperative pain 

Dong, et al. 2015 (163) Moderate 

Clinical CYP2D6 IM and PM phenotypes by drug metabolism assay are 
associated with increased exposure to tramadol and decreased 
formation of O-desmethyltramadol from tramadol as compared 
to NMs 

Poulsen, et al. 1996 (39) 
Paar, et al. 1997 (166) 
Abdel-Rahman, et al 2002 (167) 
Pedersen, et al. 2005 (168) 
Enggaard, et al. 2006 (156) 
Garcia-Quetglas, et al. 2007 (169) 
Halling, et al. 2008 (165)  

Moderate 

Clinical CYP2D6 IM (AS = 1.0) and PM (AS = 0) phenotypes by 
genotyping are associated with increased exposure to tramadol 
and decreased formation of O-desmethyltramadol from 
tramadol as compared to NMs (AS = 1.0-2.0) 

Paar, et al. 1997 (166) 
Abdel-Rahman, et al. 2002 (167) 
Levo, et al. 2003 (170) 
Borlak, et al. 2003 (171) 
Fliegert, et al. 2005 (172) 
Pedersen, et al. 2005 (168) 
Slanar, et al. 2007 (173) 
Pedersen, et al. 2006 (174) 
Stamer, et al. 2007 (157) 
Ojanpera, et al. 2007 (175) 
Kirchheiner, et al. 2008 (160) 
Allegaert, et al. 2008 (176) 
Halling, et al. 2008 (165) 
Bastami, et al. 2014 (177) 
Lane, et al. 2014 (178) 
Haage, et al. 2018 (179) 
Tanaka, et al. 2018 (180)  

High 

Clinical Increased AUC and half-life and decreased clearance of 
tramadol in *10/*10 compared to other NMs 

Gan, et al. 2002 (181) 
Yu, et al. 2018 (182)  

Weak 

Clinical CYP2D6 IM (AS = 0.25-1.0) and PM (AS = 0) genotypes are 
associated with increased formation of N-desmethyltramadol 
from tramadol compared to NMs (AS = 1.0-2.0) 

Levo, et al. 2003 (170) 
Haage, et al. 2018 (179) 
Tanaka, et al. 2018 (180)  

High 
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Clinical Earlier Tmax of tramadol in NMs (AS = 1.0-2.0) by 
genotyping compared to PMs (AS = 0) 

Filegert, et al. 2005 (172) Moderate 

Clinical No statistical difference of tramadol concentrations between 
CYP2D6 phenotype by drug metabolism assay. 

Enggaard, et al. 2006 (156) Moderate 

Clinical No statistical difference of tramadol concentration between 
CYP2D6 genotypes (PM = 0, IM = 0.5-1.0 , NM = (1.0-2.0), 
UM = 2.0-≥3) 

Kirchheiner, et al. 2008 (160) 
Bastami, et al. 2014 (177) 
Tanaka, et al. 2018 (180)  

Moderate 

Clinical Delayed Tmax of O-desmethyltramadol in CYP2D6 IMs by 
genotyping compared to NMs 

Slanar, et al. 2007 (173) Weak 

Clinical No statistical difference in clearance and concentrations of 
tramadol in CYP2D6 UM genotypes (AS = 2.0-≥3) 

Stamer, et al. 2007 (157) 
Kirchheiner, et al. 2008 (160) 
Saarikoski, et al. 2015 (183)  

Weak 

Clinical No effect of CYP2D6 UM (AS ≥3), NM (AS = 2.0) or IM (AS 
= 0.25-1.0) genotypes on concentrations of O-
desmethyltramadol 

Stamer, et al. 2007 (157) 
Bastami, et al. 2014 (177)  

Weak 

Clinical No statistical difference in renal clearance of tramadol between 
CYP2D6 genotype (PM = 0 , NM = 0.5-2.0, UM =2.0-≥3) 

Kirchheiner, et al. 2008 (160) Weak 

Clinical Increased formation of O-desmethyltramadol from tramadol in 
subjects with CYP2D6 UM (AS = 2.0-≥3) genotypes compared 
to NM genotypes (AS = 0.5-2.0). 

Kirchheiner, et al. 2008 (160) 
Saarikoski, et al. 2015 (183) 
Matic, et al. 2016 (184) 
Arafa, et al. 2018 (185)  

High 

Clinical Increased (S)-O-desmethyltramadol/(R)-O-desmethyltramadol 
ratio in PMs by genotyping compared to NMs 

Pedersen, et al. 2006 (174) 
Halling, et al. 2008 (165)  

Moderate 

Clinical Increased (S)-O-desmethyltramadol/(R)-O-desmethyltramadol 
ratio in PMs by drug metabolism assay compared to NMs 

Garcia-Quetglas, et al. 2007 (169) 
Halling, et al. 2008 (165)  

Moderate 

Clinical The CYP2D6*1/*10 and *10/*10 genotypes are associated 
with reduced clearance of tramadol as compared to *1/*1 

Li, et al. 2010 (186) High 

Clinical CYP2D6 UM genotypes are associated with increased (R)-O-
desmethyltramadol concentrations as compared to other 
genotypes 

Rauers, et al. 2010 (187) High 



CPIC Guidelines for CYP2D6, OPRM1, and COMT genotype and select opioid therapy – Supplement v.3.0      33 
 

Clinical CYP2D6 PM genotypes are associated with increased N-
desmethyltramadol/O-desmethyltramadol concentration ratios 
compared to other CYP2D6 genotypes 

Fonseca, et al. 2016 (188) High 

Clinical CYP2D6*10/*10 genotype associated with increased formation 
of N-desmethyltramadol from tramadol as compared to *1/*1 
or other genotypes comprised of the *1 and/or *2 alleles 

Yu, et al. 2018 (182)  Moderate 

Clinical No statistical difference between CYP2D6*10/*10 genotype in 
Cmax or AUC of O-desmethyltramadol, O-desmethyltramadol-
glucuronide or N,O-desmethyltramadol-glucuronide as 
compared to normal metabolizers. 

Yu, et al. 2018 (182) Weak 

Clinical CYP2D6*5/*5 genotype associated with increased formation of 
N-desmethyltramadol from tramadol as compared to *1/*1, 
*10/*10 or other genotypes comprised of the *1 and/or *2 
alleles 

Yu, et al. 2018 (182) Weak 

Clinical CYP2D6*5/*5 and *10/*10 genotypes are associated with 
decreased O-desmethyltramadol and N,O-desmethyltramadol 
concentrations as compared to genotypes comprised of the *1 
and/or *2 alleles 

Yu, et al. 2018 (189) Weak 

Clinical CYP2D6*5/*5 and *10/*10 genotypes are associated with 
decreased O-desmethyltramadol/tramadol ratio and N,O-
desmethyltramadol/N-desmethyltramadol ratio as compared to 
genotypes comprised of the *1 and/or *2 alleles 

Yu, et al. 2018 (182) 
Yu, et al. 2018 (189) 

High 

Clinical CYP2D6*4 or *10 alleles are associated with decreased 
excretion of O-desmethyltramadol as compared to *1/*1 

Arafa, et al. 2018 (185) High 

Clinical CYP2D6 PM phenotype by genotyping is associated with 
decreased AUC of N,O-desmethyltramadol enantiomers as 
compared to NMs and IMs 

Haage, et al. 2018 (179) Moderate 

Clinical No statistical differences of concentrations of N,O-
desmethyltramadol between CYP2D6 genotypes.  

Tanaka, et al. 2018 (180) Weak 
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Clinical CYP2D6 IM and PM genotypes are associated with decreased 
N,O-desmethyltramadol/N-desmethyltramadol ratio and 
increased N,O-desmethyltramadol/O-desmethyltramadol ratios 
compared to NMs 

Tanaka, et al. 2018 (180) High 

Clinical Increased frequency of tramadol-induced adverse events, 
including respiratory depression, in UMs and NMs by drug 
metabolism assay compared to IMs or PMs 

Poulsen, et al. 1996 (39) 
Garcia-Quetglas, et al. 2007 (169) 
Gleason, et al. 1997 (190) 

Weak 

Clinical Increased frequency of tramadol-induced adverse events, 
including respiratory depression, in UMs (AS = 2.0-≥3)and 
NMs (AS = 1.0-2.0) by genotyping compared to IMs (AS = 
0.5-1.0) or PMs AS = 0) 

Kirchheiner, et al. 2008 (160) 
Stamer, et al. 2008 (191) 
Kim, et al. 2010 (192) 
Elkalioubie, et al. 2011 (193) 
Orliaguet, et al. 2015 (194) 

Moderate 

Clinical No statistical differences of tramadol-induced side effects 
between CYP2D6 phenotype by drug metabolism assay. 

Wilder-Smith, et al. 2005 (159) 
 

Weak 

Clinical No statistical differences of tramadol-induced side effects 
between CYP2D6 genotypes. 

Bastami, et al. 2014 (177) Weak 

Clinical No significant association between CYP2D6*10 and incidence 
of adverse events following tramadol consumption in 
postoperative patients 

Wang, et al. 2006 (164) Weak 

Clinical CYP2D6*2 allele is not associated with incidence of tramadol-
induced adverse events 

Nasare, et al. 2016 (161) Weak 

Clinical CYP2D6*4 or *10 alleles are associated with decreased 
severity of tramadol-induced hepatotoxicity as compared to *1 
and duplicated CYP2D6 alleles 

Arafa, et al. 2018 (185) Moderate 

aSee Level of Evidence section for definitions.
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SUPPLEMENTAL TABLE S2. EVIDENCE LINKING OPRM1 GENOTYPE WITH OPIOID RESPONSE 

Type of 
experimental 
model (in 
vitro, in vivo 
preclinical, 
or clinical)  

Major findings  References Level of 
Evidencea 

In vitro The rs17174801 G allele is associated with decreased expression and 
increased maximal activation of the mu opioid receptor compared to the WT 
receptor 

Befort, et al. 2001 (195) Weak 

In vitro The rs376950705 A allele is associated with decreased mu opioid receptor 
signaling compared to the WT receptor 

Befort, et al. 2001 (195) Weak 

In vitro The rs200811844 C allele is associated with decreased mu opioid receptor 
signaling compared to the WT receptor 

Befort, et al. 2001 (195) 
Wang, et al. 2001 (196) 
Fortin, et al. 2010 (197) 

Weak 

In vitro The rs1799971 G allele is associated with reduced expression of the mu 
opioid receptor compared to the WT receptor 

Beyer, et al. 2004 (198) Moderate 

In vitro The rs1799971 G allele does not significantly alter mu opioid receptor 
desensitization, internalization or resensitization 

Beyer, et al. 2004 (198) Moderate 

In vitro No significant difference in protein expression of the mu opioid receptor 
based on the presence of the rs1799971 G allele 

Deb, et al. 2010 (199) Moderate 

In vitro The rs1799971 G allele is associated with increased PKA activity and 
decreased pERK1/2 levels in opioid signaling 

Deb, et al. 2010 (199) Weak 

In vitro The rs17174822 T and rs376950705 A alleles are independently associated 
with decreased mu opioid receptor signaling 

Fortin, et al. 2010 (197) Weak 
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In vitro DAMGO and other endogenous mu opioid receptor agonists have a reduced 
potency at receptors carrying the rs9282819 T, rs1799974 A, rs17174822 T, 
rs376950705 A or rs200811844 C alleles 

Fortin, et al. 2010 (197) Weak 

In vitro The rs34074916 A allele is associated with absence of DAMGO binding to 
the mu opioid receptor 

Fortin, et al. 2010 (197) Weak 

Alfentanil 

Clinical Subjects with the rs1799971 GG genotype show decreased cerebral 
processing of the sensory intensity or pain 

Oertel, et al. 2008 (200) Moderate 

Clinical Patients carrying the rs1799971 G allele require higher plasma concentrations 
of alfentanil to achieve a 50% increase in analgesia compared to patients with 
the AA genotype 

Oertel, et al. 2006 (201) Moderate 

Clinical Patients with the rs1799971 AG or GG genotypes have increased alfentanil 
dose requirements compared to patients with the AA genotype 

Oertel, et al. 2006(201) 
Ginosar, et al. 2009 (202) 

Moderate 

Clinical Patients with the rs1799971 GG genotype can tolerate higher alfentanil 
concentrations before they reach a 50% increase in respiratory depression 
compared to AA and AG subjects. 

Oertel, et al. 2006 (201) Moderate 

Clinical No significant difference in alfentanil-induced side effects based on 
rs1799971 genotype 

Ginosar, et al. 2009 (202) Weak 

Buprenorphine 

In vitro Opioid signaling from buprenorphine is reduced in mu opioid receptors with 
the rs1799971 G allele 

Knapman, et al. 2014 (203) Moderate 

Clinical No significant difference in analgesic response to buprenorphine based on 
rs1799971 genotype 

Blanco, et al. 2016 (204) Weak 

Clinical No significant difference in response to buprenorphine for the treatment of 
opioid dependence based on rs10485058, rs671531, rs558948 or rs645027 
genotypes 

Crist, et al. 2018 (205) Moderate 

Carfentanil 
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Clinical Subjects with the rs1799971 AG genotype show reduced global binding 
potential of carfentanil in PET images compared to subjects with the AA 
genotype 

Weerts, et al. 2013 (206) Moderate 

Codeine 

Clinical Patients with the rs1799971 AG genotype have reduced codeine dose 
requirements compared to patients with the AA genotype 

Baber, et al. 2015 (71) Moderate 

Clinical No significant difference in plasma concentrations of codeine, morphine or 
the morphine/codeine ratio based on rs1799971 genotype 

Lam, et al. 2014 (95) Weak 

Clinical No significant difference in incidence of codeine-induced CNS depression 
based on rs1799971 or rs563649 genotypes 

Sistonen, et al. 2012 (103) Weak 

Fentanyl 

In vitro rs1799971 does not alter the clinical effect of fentanyl at mu opioid receptors Knapman, et al. 2014 (203) Moderate 

Clinical Patients with the rs1799971 AA genotype have an increased ED50 for 
fentanyl compared to patients carrying the G allele 

Landau, et al. 2008 (207) High 

Clinical Patients carrying the rs1799971 G allele have a reduced analgesic response to 
fentanyl compared to patients with the AA genotype 

Fukuda, et al. 2009 (208) 
Wong, et al. 2010 (209) 
Landau, et al. 2013 (210) 
Ginosar, et al. 2013 (211) 

Weak 

Clinical No significant difference in analgesic response to fentanyl based on 
rs9384179 genotype 

Fukuda, et al. 2009 (208) Moderate 

Clinical Patients with the rs1799971 GG genotype have increased fentanyl dose 
requirements compared to patients with the AA or AG genotypes 

Zhang, et al. 2010 (212) 
Zhang, et al. 2011 (213) 
Zhang, et al. 2018 (214) 

Moderate 
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Clinical Patients carrying the rs1799971 G allele have increased fentanyl dose 
requirements compared to patients with the AA genotype 

Sugino, et al. 2014 (215) 
Fukuda, et al. 2009 (208) 
Wong, et al. 2010 (209) 
Mamie, et al. 2013 (216) 
Liao, et al. 2013 (217) 
Kim, et al. 2013 (218) 
Barratt, et al. 2015 (219) 

Weak 

Clinical Patients carrying the rs9384179 G allele have decreased fentanyl dose 
requirements compared to patients with the AA genotype 

Fukuda, et al. 2009 (208) Moderate 

Clinical Patients with the rs1799971 AA genotype and who carry the rs9384179 G 
allele have decreased fentanyl dose requirements compared to other SNP 
combinations 

Fukuda, et al. 2009 (208) Moderate 

Clinical No significant difference in fentanyl dose requirements based on rs510769, 
rs4870266, rs3798683, rs1323042, rs609623, rs9397685 or rs644261 
genotypes or the haplotypes GGGAACAC (H14), AGGGACAC (H15), 
GGGAACGC (H16) or AGAGACAC (H17) 

Sugino, et al. 2014 (215) Weak 

Clinical No significant difference in fentanyl-induced side effect based on rs1799971 
genotype (including gastric motility, nausea and vomiting, sedation and 
dizziness) 

Wallden, et al. 2008 (220) 
Zhang, et al. 2010 (212) 
Wong, et al. 2010 (209) 
Zhang, et al. 2011 (213) 
Pang, et al. 2012 (221) 
Liao, et al. 2013 (217) 
Zhang, et al. 2010 (212) 
Zhang, et al. 2018 (214) 
Liao, et al. 2013 (217) 

Weak 

Clinical Patients carrying the rs1799971 G allele have a reduced incidence of 
fentanyl-induced pruritus compared to patients with the AA genotype 

Wong, et al. 2010 (209) 
Ginosar, et al. 2013 (211) 
Wong, et al. 2010 (209) 

Weak 

Clinical rs2075572 is not associated with the effects of fentanyl on gastric motility Wallden, et al 2008 (220) Weak 

Clinical The rs540825 AT genotype is associated with increased likelihood of 
fentanyl-induced emesis 

Pang, et al. 2012 (221) Moderate 
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Clinical rs1799971 is not associated with the hypotensive effect of fentanyl Saiz-Rodriguez, et al. 2019 
(222) 

Weak 

Clinical The G allele of rs1799971 is associated with an increased risk of somnolence 
following administration of fentanyl 

Saiz-Rodriguez, et al. 2019 
(222) 

Weak 

Clinical No significant difference in incidence of fentanyl-induced emesis based on 
rs12210856, rs12190259, rs12205732, rs6912029, rs563649, rs9322446, 
rs675016, rs562859, rs606545, rs17181352, rs671531, rs583664, rs658156, 
rs9371776, rs558948, rs558025, rs645027, rs598160, rs644261 or 
rs11575856 genotypes 

Pang, et al. 2012 (221) Weak 

Clinical Patients with the rs9397685 AG genotype have reduced severity of 
postoperative nausea and vomiting linked to fentanyl 

Sugino, et al. 2014 (215) Weak 

Clinical No significant difference in incidence of postoperative nausea and vomiting 
linked to fentanyl based on the OPRM1 haplotypes GGGAACAC (H14), 
AGGGACAC (H15) or AGAGACAC (H17) 

Sugino, et al. 2014 (215) Weak 

Clinical Patients carrying the OPRM1 haplotype GGGAACGC (H16) have a reduced 
incidence of postoperative nausea and vomiting linked to fentanyl 

Sugino, et al. 2014 (215) Weak 

Hydrocodone 
Clinical Patients with the rs1799971 AA genotype exhibit an analgesic response 

which correlates to hydrocodone dose. This correlation is lost in patients with 
the AG or GG genotypes 

Boswell, et al. 2013 (223) Weak 

Clinical No significant difference in hydrocodone dosage requirements based on 
rs1799971 genotype 

Boswell, et al. 2013 (223) Weak 

Clinical No significant difference in plasma concentrations of hydrocodone or 
hydromorphone based on rs1799971 genotype 

Boswell, et al. 2013 (223) Weak 

Clinical Patients with the rs1799971 AG or GG genotypes have an increased 
incidence of hydrocodone-induced side effects compared to patients with the 
AA genotype 

Boswell, et al. 2013 (223) Weak 



CPIC Guidelines for CYP2D6, OPRM1, and COMT genotype and select opioid therapy – Supplement v.3.0      40 
 

Hydromorphone 

Clinical Patients carrying the rs1799971 G allele have reduced satisfaction with their 
analgesia compared to patients with the AA genotype 

Xia, et al. 2015 (224) Weak 

Clinical rs1799971 is not associated with hydromorphone-induced side effects Xia, et al. 2015 (224) Weak 

Levomethadone 
Preclinical Levomethadone has a reduced potency (as measured by miotic effects) in 

subjects carrying the rs1799971 G allele than in subjects with the AA 
genotype. 

Lötsch, et al. 2006 (127) Moderate 

Clinical rs1799971 is not associated with incidence of levomethadone-induced 
vomiting 

Lötsch, et al. 2006 (127) Weak 

Methadone 

In vitro The clinical effect of methadone at mu opioid receptors is not significantly 
altered by the presence of the rs1799971 G allele 

Knapman, et al. 2014 (203) Weak 

Clinical rs1799971, in combination with variants in other genes, is associated with 
maximum dose of methadone 

Hung, et al. 2011 (225) Weak 

Clinical The rs1799971 G allele is associated with increased methadone dose 
requirements in methadone maintenance therapy 

Wang, et al. 2012 (226) 
Moult, et al. 2015 (125) 

Weak 

Clinical The rs2075572 C allele is associated with increased methadone dose 
requirements in methadone maintenance therapy 

Wang, et al. 2012 (226) Weak 

Clinical No significant difference in methadone dosage requirements in methadone 
maintenance therapy based rs499796, rs1074287, rs6912029, rs12209447, 
rs510769, rs3798676, rs7748401, rs495491, rs10457090, rs589046, 
rs3378152, rs563649 or rs553202 genotypes 

Wang, et al. 2012 (226) Weak 

Clinical Patients with the rs558025 AG or GG genotypes have decreased methadone 
dose requirements in methadone maintenance therapy compared to patients 
with the AA genotype 

Levran, et al. 2013 (227) Weak 
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Clinical Patients carrying the C allele of rs73568641 require a higher daily methadone 
dose for methadone maintenance treatment compared to patients with the TT 
genotype 

Smith, et al. 2017 (228) Moderate 

Clinical Patients carrying the rs10485058 G allele have a reduced response to 
methadone maintenance treatment for opioid dependence (measured by 
number of opioid-positive urine screens) 

Crist, et al. 2018 (205) Weak 

Clinical No significant difference in response to methadone maintenance treatment of 
opioid dependence based on rs671531, rs558948 or rs645027 genotype 

Crist, et al. 2018 (205) Weak 

Clinical rs1799971 is not associated with postmortem methadone plasma 
concentrations 

Bunten, et al. 2010 (229) Weak 

Clinical No significant difference in plasma concentrations of methadone or its 
metabolites based on rs1799971, rs2075572, rs499796, rs1074287, 
rs6912029, rs12209447, rs510769, rs3798676, rs7748401, rs495491, 
rs10457090, rs589046, rs3378152, rs563649 or rs553202 genotypes 

Wang, et al. 2012 (226) Weak 

Clinical Patients carrying the rs1799971 G allele have a reduced incidence of 
methadone toxicity 

Bunten, et al. 2011 (230) Weak 

Clinical Patients carrying the rs499796 C allele have more severe changes in libido 
after commencing methadone maintenance treatment compared to patients 
with the TT genotype 

Wang, et al. 2012 (226) Weak 

Clinical rs1074287, rs6912029, rs12209447, rs510769, rs3798676, rs7748401, 
rs495491, rs10457090, rs589046, rs3378152, rs563649 and rs2075572 are 
associated with changes in in libido after commencing methadone 
maintenance treatment 

Wang, et al. 2012 (226) Weak 

Clinical No significant difference in libido after commencing methadone maintenance 
treatment based on rs1799971 or rs553202 genotypes 

Wang, et al. 2012 (226) Weak 

Clinical rs499796 is not associated with onset of insomnia or severity of insomnia 
after commencing methadone maintenance treatment compared to patients 
with the TT genotype 

Wang, et al. 2012 (226) Weak 
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Clinical rs1074287, rs6912029, rs12209447, rs510769, rs3798676, rs7748401, 
rs495491, rs10457090, rs589046, rs3378152, rs563649 and rs2075572 are 
associated with onset of insomnia after commencing methadone maintenance 
treatment 

Wang, et al. 2012 (226) Weak 

Clinical No significant difference in onset of insomnia or severity of insomnia after 
commencing methadone maintenance treatment based on rs1799971 or 
rs553202 genotype 

Wang, et al. 2012 (226) Weak 

Clinical The rs1074287 AA, rs6912029 GG, rs12209447 CC, rs510769 GG, 
rs3798676 CC, rs7748401 TT, rs495491 TT, rs10457090 AA, rs589046 GG, 
rs3378152 AA or rs563649 GG genotypes are associated with increased 
severity of insomnia after commencing methadone maintenance treatment 

Wang, et al. 2012 (226) Weak 

Clinical No significant difference in severity of insomnia after commencing 
methadone maintenance treatment based on rs2075572 genotype 

Wang, et al. 2012 (226) Weak 

Clinical Patients with the rs1799971 AA genotype have increased fatigue after 
commencing methadone maintenance therapy compared to patients carrying 
the G allele  

Wang, et al. 2012 (226) Weak 

Clinical No significant difference in methadone-induced fatigue or withdrawal 
symptoms in methadone maintenance therapy based on rs2075572, rs499796, 
rs1074287, rs6912029, rs12209447, rs510769, rs3798676, rs7748401, 
rs495491, rs10457090, rs589046, rs3378152, rs563649 or rs553202 genotype 

Wang, et al. 2012 (226) Weak 

Clinical rs1799971 is not associated with withdrawal symptoms in methadone 
maintenance therapy 

Wang, et al. 2012 (226)  Weak 

Clinical No significant difference in the number of suicide attempts made by patients 
undergoing methadone maintenance therapy based on rs1799971 genotype 

Icick, et al. 2014 (231) Weak 

Clinical No significant difference in the need to switch to alternative opioids due to 
inadequate analgesia or unacceptable side effects from morphine based on 
rs1799971 genotype 

Ross, et al. 2005 (232) Weak 

Morphine 
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In vitro The rs1799974 A, rs376950705 A and rs200811844 C allele are 
independently associated with decreased maximal stimulation of the mu 
opioid receptor by morphine compared to the WT receptor 

Wang, et al. 2001 (196) Moderate 

In vitro The rs1799974 A allele does not alter mu opioid receptor desensitization 
following morphine pretreatment compared to the WT receptor 

Wang, et al. 2001 (196) Moderate 

In vitro The rs376950705 A and rs200811844 C alleles are independently associated 
with decreased desensitization of the mu opioid receptor following morphine 
pretreatment compared to the WT receptor 

Wang, et al. 2001 (196) Moderate 

Preclinical Morphine-6-glucuronide has a reduced potency in subjects carrying the 
rs1799971 G allele compared to subjects with the AA genotype (determined 
by changes in pupil size) 

Lötsch, et al. 2002 (233) 
Skarke, et al. 2003 (234) 

Weak 

Preclinical Morphine has a reduced potency in subjects carrying the rs1799971 G allele 
compared to subjects with the AA genotype (determined by changes in pupil 
size) 

Lötsch, et al. 2002 (233) 
Skarke, et al. 2003 (234) 

Weak 

In vitro No significant difference in the binding affinity of morphine or morphine-6-
glucuronide to the mu opioid receptor based on the presence of the rs1799971 
G allele. 

Beyer, et al. 2004 (198) Moderate 

In vitro No significant difference in the clinical effect of morphine at mu opioid 
receptors based on the presence of the rs1799971 G allele 

Knapman, et al. 2014 (203) Moderate 

Clinical Patients carrying the rs1799971 G allele have a reduced analgesic response to 
morphine (including an increased need for rescue analgesia) compared to 
patients with the AA genotype 

Hirota, et al. 2003 (235) 
Campa, et al. 2008 (236) 
Matic, et al. 2014 (237) 
Lee, et al. 2016 (238) 
Skarke, et al. 2003 (234) 
Nielsen, et al. 2017 (239) 

Weak 

Clinical No significant difference in the need to switch to alternative opioids due to 
inadequate analgesia or unacceptable side effects from morphine based on 
rs6912029, rs579316, rs589046, rs9479757, rs2075572 or rs583664 
genotypes or the haplotypes TACCGGT (H1), TACCGCC (H2), TGCCGGT 
(H3), TATTACT (H4), TATTGGT (H5), GACTGCT (H6) 

Ross, et al. 2005 (232) Weak 
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Clinical Patients carrying the rs9479757 A allele have reduced morphine analgesia to 
rectal thermal stimulation 

Nielsen, et al. 2017 (239) Moderate 

Clinical No significant difference in analgesic response to morphine based on 
rs9479757, rs589046, rs563649 or rs533586 genotypes 

Nielsen, et al. 2017 (239) Weak 

Clinical Patients with the rs1799971 GG genotype have increased morphine dose 
requirements compared to patients with the AA or AG genotypes 

Klepstad, et al. 2004 (240) 
Chou, et al. 2006 (241) 
Sia, et al. 2013 (242) 
Somogyi, et al. 2016 (243) 
Chou, et al. 2006 (244) 
Bastami, et al. 2014 (245) 

Moderate 

Clinical Patients carrying the rs1799971 G allele have increased morphine dose 
requirements compared to patients with the AA genotype 

Coulbault, et al. 2006 (246) 
Sia, et al. 2008 (247) 
Tan, et al. 2009 (248) 
Oliveira, et al. 2014 (249) 
Matic, et al. 2014 (237) 
Hajj, et al. 2015 (250) 
De Gregori, et al. 2016 (251) 
Hajj, et al. 2017 (252) 
Li, et al. 2019 (253) 

Moderate 

Clinical Patients carrying the rs1799971 G allele have decreased morphine dose 
requirements compared to patients with the AA genotype 

Kolesnikov, et al. 2011 (254) Weak 

Clinical No significant difference in morphine dose requirements based on rs1799971 
genotype 

Chou, et al. 2006 (244) 
Huehne, et al. 2009 (255) 
Matsuoka, et al. 2012 (256) 
Mamie, et al. 2013 (216) 
De Gregori, et al. 2013 (257) 
Chidambaran, et al. 2015 (258) 

Weak 

Clinical Patients with the rs6912029 TT genotype have increased morphine dose 
requirements 

Tan, et al. 2009 (248) Weak 
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Clinical No significant difference in morphine dose requirements based on rs6912029, 
rs9479757 or rs2075572 genotypes 

Klepstad, et al. 2004 (240) Moderate 

Clinical No significant difference in morphine dose requirements based on rs7776341, 
rs563649, rs1319339, rs2075572, rs540825 or rs677830 genotypes 

De Gregori, et al. 2016 (251) 
  

Weak 

Clinical Patients carrying the rs73568641 C allele have increased morphine dose 
requirements compared to patients with the TT genotype 

Smith, et al. 2017 (228) Weak 

Clinical OPRM1 haplotype TAGCCTG (H19) is associated with increased morphine 
dose requirements 

De Gregori, et al. 2016 (251) Moderate 

Clinical OPRM1 haplotype CAACTAA (H22) is associated with decreased morphine 
dose requirements 

De Gregori, et al. 2016 (251) Moderate 

Clinical No significant difference in morphine dose requirements based on the 
haplotypes TAACCTG (H18), TAACTAA (H20) or TAACTTG (H21) 

De Gregori, et al. 2016 (251) Moderate 

Clinical No significant difference in plasma concentrations of morphine, morphine-6-
glucuronide or morphine-3-glucuronide based on rs6912029, rs9479757 or 
rs2075572 genotypes 

Klepstad, et al. 2004 (240) Moderate 

Clinical Patients with the rs1799971 AG or GG genotype have increased plasma 
concentrations of morphine, morphine-6-glucuronide or morphine-3-
glucuronide compared to patients with the AA genotype 

Klepstad, et al. 2004 (240) 
Bastami, et al. 2014 (245) 

Weak 

Clinical No significant difference in plasma concentrations of morphine based on 
rs1799971 genotype 

Matsuoka, et al. 2012 (256) Moderate 

Clinical Patients with the rs1799971 AA genotype are more likely to experience 
morphine-6-glucuronide toxicity following morphine treatment than patients 
with the GG genotype 

Lötsch, et al. 2002 (259) Weak 
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Clinical No significant difference in the incidence of morphine-induced side effects 
based on rs1799971 genotype (including nausea and vomiting and pruritus) 

Coulbault, et al. 2006 (246) 
Sia, et al. 2013 (242) 
Sia, et al. 2008 (247) 
Chou, et al. 2006 (241) 
Fujita, et al. 2010 (260) 
Jimenez, et al. 2012 (261) 
Sia, et al. 2008 (247) 
Tan, et al. 2009 (248) 
Sia, et al. 2013 (242) 

Weak 

Clinical Patients with the rs1799971 AA genotype are more likely to experience 
morphine-induced nausea and/or vomiting than patients carrying the G allele 

Sia, et al. 2008 (247) 
Tan, et al. 2009 (248) 
Kolesnikov, et al. 2011 (254) 
Somogyi, et al. 2016 (243) 

Weak 

Clinical Patients with the rs1799971 GG genotype have a decreased severity of 
morphine-induced pruritus compared to patients with the AA or AG 
genotypes  

Tsai, et al. 2010 (262) Moderate 

Clinical Patients carrying the rs1799971 G allele have decreased severity of 
morphine-induced sedation compared to patients with the AA genotype 

Kolesnikov, et al. 2011 (254) Weak 

Clinical Patients with the rs1799971 AA genotype are at an increased risk of 
developing morphine-induced respiratory depression 

Chidambaran, et al. 2015 (258) Weak 

Clinical rs6912029 is not associated with morphine-induced nausea, vomiting or 
pruritus 

Tan, et al. 2009 (248) Moderate 

Clinical rs1799972 is not associated with incidence of morphine-induced side effects Jimenez, et al. 2012 (261) Weak 

Clinical Patients with the rs1799971 AG genotype and sleep apnea spend less time 
asleep with oxygen saturation <90% when treated with morphine compared to 
patients with the AA genotype 

Rowsell, et al. 2019 (263) Weak 

Clinical Patients with the rs1799971 AG genotype may have a reduced analgesic 
response to morphine-6-glucuronide  

Romberg, et al. 2005 (264) Weak 
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Clinical No significant difference in severity of respiratory depression induced by 
morphine-6-glucuronide based on rs1799971 genotype 

Romberg, et al. 2005 (264) Weak 

Naloxone 
In vitro Cells which have been pretreated with morphine and that carry the rs1799971 

G allele are unaffected by naloxone treatment. Morphine-pretreated cells with 
the AA genotype show decreased opioid signaling when treated with 
naloxone 

Deb, et al. 2010 (199) Weak 

Preclinical No significant difference in ACTH response to naloxone based on rs1799971 
genotype 

Hernandez-Avila, et al. 2003 
(265) 
Chong, et al. 2006 (266) 
Hernandez-Avila, et al. 2007 
(267) 

Moderate 

Preclinical Subjects with the rs2075572 CC genotype have a reduced ACTH response to 
naloxone compared to subjects carrying the G allele. 

Hernandez-Avila, et al. 2007 
(267) 

Weak 

Preclinical No significant difference in ACTH response to naloxone based on rs495491, 
rs3798683, rs609148 or rs648893 genotypes 

Hernandez-Avila, et al. 2007 
(267) 

Weak 

Preclinical Subjects carrying the rs1799971 G allele have an increased and prolonged 
cortisol response to naloxone compared to subjects with the AA genotype 

Chong, et al. 2006 (266) 
Hernandez-Avila, et al. 2003 
(265) 

Moderate 

Preclinical No significant difference in cortisol response to naloxone based on 
rs1799971, rs495491, rs2075572, rs3798683, rs609148 or rs648893 
genotypes 

Hernandez-Avila, et al. 2007 
(267) 

Weak 

Naltrexone 

Preclinical Subjects with the rs1799971 AG genotype show increased naltrexone 
occupancy of mu opioid receptors compared to subjects with the AA 
genotype 

Weerts, et al. 2013 (206) Weak 

Clinical Subjects carrying the rs1799971 G allele show reduced brain activation upon 
naltrexone treatment compared to patients with the AA genotype 

Schacht, et al. 2013 (268) Weak 

Clinical No significant difference in response to naltrexone in treating spasticity 
associated with multiple sclerosis based on rs1799971 genotype 

Gironi, et al. 2008 (269) Weak 
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Clinical Patients carrying the rs1799971 G allele have an increased incidence of 
naltrexone-induced side effects 

Setiawan, et al. 2011 (270) 
Coller, et al. 2011 (271) 

Weak 

Clinical The rs1799971 genotype is not associated with degree of brain activation in 
response to alcohol taste cues in patients treated with naltrexone. 

Lim, et al. 2019 (272) Weak 

Clinical Patients carrying the rs1799971 G allele have an increased incidence of 
naltrexone-induced side effects 

Setiawan, et al. (270) 
Coller, et al. (271) 

Weak 

Clinical Patients carrying the rs1799971 G allele have increased sedation following 
naltrexone treatment compared to patients with the AA genotype 

Ray, et al. 2012 (273) Weak 

Clinical rs1799971, rs10485057, rs1294092, rs1381376, rs2075572, rs3823010, 
rs495491, rs511435, rs524731, rs548646, rs609148, rs648893, rs9322447 or 
rs9479757 genotypes are not associated with nicotine quit rate or secondary 
outcomes of smoking cessation 

Roche, et al. 2019 (274) Weak 

Opioids 
In vitro No significant difference in morphine or heroin binding to the mu opioid 

receptor compared to the WT receptor based on the presence of the 
rs1799971 G, rs17174801 G, rs376950705 A or rs200811844 C alleles. 

Befort, et al. 2001 (195) Weak 

In vitro No significant difference in mu opioid receptor internalization following 
stimulation with morphine based on the presence of the rs79220505 C allele 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro The rs76773039 A allele is associated with increased internalization of the 
mu opioid receptor following stimulation with morphine 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro No significant difference in morphine potency at the mu opioid receptor 
based on the presence of the rs76773039 A allele 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro The rs79910351 T allele is associated with an absence of mu opioid receptor 
internalization following stimulation with morphine or DAMGO 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro rs76773039 A allele is associated with decreased receptor tolerance and 
dependence on morphine 

Ravindranathan, et al. 2009 
(275) 

Weak 
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In vitro No significant difference in mu opioid receptor internalization based on the 
presence of the variants rs1799972, rs76546679, rs17174794 or rs62638690 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro MOR1A splice variant - the rs76546679 A and rs62638690 T alleles are 
independently associated with reduced morphine potency at the mu opioid 
receptor 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro MOR1A splice variant - no significant difference in the potency of morphine 
at the mu opioid receptor based on the presence of the variants rs1799972 or 
rs17174794 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro MOR1A splice variant - the rs17174794 G allele is associated with increased 
clinical effect of morphine at the mu opioid receptor compared to the WT 
allele 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro MOR1A splice variant - no significant difference in morphine clinical effect 
in receptors carrying the rs1799971, rs76546679 or rs17174794 variants 
compared to the WT receptor 

Ravindranathan, et al. 2009 
(275) 

Weak 

In vitro Treatment of mu opioid receptors with the rs34074916 A allele with 
naltrexone, naloxone or buprenorphine is associated with an increase in 
receptor expression, while a corresponding increase is not seen with the WT 
receptor 

Fortin, et al. 2010 (197) Weak 

Clinical Patients carrying the rs1799971 G allele and with 'anger-out' characteristics 
have a reduced analgesic response to opioids compared to patients with the 
AA genotype and 'anger-out' characteristics 

Bruehl, et al. 2006 (276) Weak 

Clinical Patients with the rs79910351 CT genotype do not have an analgesic response 
to opioids (remifentanil, fentanyl, morphine, oxycodone, hydromorphone, 
methadone) 

Skorpen, et al. 2016 (277) Weak 

Clinical No significant difference in opioid dose requirements based on rs1799971 
genotype (buprenorphine, dihydrocodeine, fentanyl, hydromorphone, 
meperidine, (R)-methadone, morphine, oxycodone, piritramide, tilidine, 
tramadol and unspecified opioids) 

Janicki, et al. 2006 (278) 
Lötsch, et al. 2009 (29) 
Naito, et al. 2011 (147) 
Klepstad, et al. 2011 (279) 
Henker, et al. 2013 (280) 
Thomazeau, et al. 2016 (281) 
Matic, et al. 2017 (282) 
Margarit, et al. 2019 (283) 

Weak 
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Clinical Patients with the rs1799971 AG or GG genotypes have increased opioid dose 
requirements compared to patients with the AA genotype (codeine, fentanyl, 
hydrocodone, hydromorphone, levorphanol, meperidine, methadone, 
morphine, oxycodone, oxymorphone, tramadol) 

Gong, et al. 2013 (284) 
Khalil, et al. 2017 (285) 

Moderate 

Clinical Patients with the rs1799971 GG genotype have increased opioid dose 
requirements compared to patients with the AA or AG genotypes. (fentanyl, 
morphine) 

Hayashida, et al. 2008 (286) Moderate 

Clinical Patients with the rs1799971 AA genotype have increased opioid consumption 
compared to patients carrying the G allele (morphine and unspecified opioids) 

Janicki, et al. 2006 (278) Weak 

Clinical No significant difference in opioid dose requirements based on rs2075572, 
rs599548, rs9384179 or rs558025 genotypes (fentanyl, morphine) 

Hayashida, et al. 2008 (286) Weak 

Clinical No significant difference in opioid dose requirements based on rs540825, 
rs562859, rs548646, rs1323042, rs618207, rs639855, rs9479757 or rs497976 
genotypes (unspecified opioids) 

Klepstad, et al. 2011 (279) Weak 

Clinical PGx-guided prescription of opioids, including OPRM1 variants, results in a 
reduced requirement for opioids (unspecified opioids) 

Senagore, et al. 2017 (137) Weak 

Clinical OPRM1 haplotypes AGAAA (H9) and AGGAA (H11) are independently 
associated with decreased opioid dose requirements compared to the GCGAA 
haplotype (H7) (fentanyl, morphine) 

Hayashida, et al. 2008 (286) Weak 

Clinical No significant difference in opioid dose requirements based on the OPRM1 
haplotypes ACGAA (H8), AGGGG (H10), ACGGA (H12) or AGGAG 
(H13) (fentanyl, morphine) 

Hayashida, et al. 2008 (286) Weak 

Clinical The rs79910351 TT genotype  is associatedwith a lack of response to opioids Olsen, et al. 2019 (287) Weak 

Clinical Infants with the rs1799971 AG or GG genotypes have shorter hospital stays 
for treatment of neonatal abstinence syndrome compared to infants with the 
AA genotype (buprenorphine, methadone) 

Wachman, et al. 2013 (288) Moderate 

Clinical Mothers with the rs1799971 AG or GG genotype have infants who are less 
likely to require treatment for neonatal abstinence syndrome compared to 
mothers with the AA genotype (buprenorphine, methadone) 

Wachman, et al. 2013 (288) Weak 
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Clinical An infant's rs1799971 genotype is not associated with the likelihood that they 
will require treatment for neonatal abstinence syndrome (methadone) 

Mactier, et al. 2017 (140) Weak 

Clinical The rs1799971 G allele is found at a higher frequency in opioid-dependent 
patients than in healthy controls (heroin, unspecified opioids)  

Bond, et al. 1998 (289) 
Franke, et al. 2003 (290) 
Crowley, et al. 2003 (291) 
Carpentier, et al. 2013 (292) 
Beer, et al. 2013 (293) 
Ahmed, et al. 2018 (294) 

Weak 

Clinical The rs1799971 G allele is associated with a decreased risk of developing 
opioid dependence 

Zhou, et al. 2020 (295) Moderate 

Clinical T allele of rs1799972 is associated with an increased likelihood of developing 
opioid dependence (unspecified opioids) 

Bond, et al. 1998 (289) Weak 

Clinical No significant difference in the likelihood of developing opioid dependence 
based on rs1799972, rs17180968, rs17180982 or rs17174629 genotypes 
(unspecified opioids) 

Crowley, et al. 2003 (291) Weak 

Clinical The rs9479757 AG genotype is found at a lower frequency in opioid-
dependent patients compared to healthy controls (unspecified opioids) 

Beer, et al. 2013 (293) Weak 

Clinical The rs9479757 GG genotype is found at a higher frequency in opioid-
dependent patients compared to healthy controls (unspecified opioids) 

Beer, et al. 2013 (293) Moderate 

Clinical No significant difference in likelihood of developing opioid dependence 
based on rs9479757 genotype (unspecified opioids) 

Franke, et al. 2003 (290) Weak 

Clinical rs3778151 and rs510769 do not differ in frequency between opioid-dependent 
patients and healthy controls (unspecified opioids) 

Beer, et al. 2013 (293) Weak 

Clinical The rs675026 CT and TT genotypes are found more frequently in patients 
with opioid dependence compared to healthy controls (unspecified opioids) 

Christoffersen, et al. 2016 (141) Weak 

Clinical rs540825 and rs563649 do not differ in frequency between opioid-dependent 
patients and healthy controls (unspecified opioids) 

Christoffersen, et al. 2016 (141) Weak 
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Clinical The rs1799971 AA genotype is associated with increased adverse events in 
patients undergoing an opioid deprescription program 

Muriel, et al. 2019 (296) Weak 

Clinical No significant difference in the development of opioid tolerance based on 
rs1799971 genotype (oxycodone) 

Naito, et al. 2011 (147) Weak 

Clinical No significant difference in incidence of opioid-induced side effects based on 
rs1799971 genotype (buprenorphine, dihydrocodeine, fentanyl, 
hydromorphone, (R)-methadone, morphine, oxycodone, piritramide, tilidine, 
tramadol and unspecified opioids) 

Lötsch, et al. 2009 (29) 
Laugsand, et al. 2011 (297) 
Jones, et al. 2019 (298) 

Weak 

Clinical Patients with the rs1799971 AA genotype had decreased opioid-induced 
sedation compared to patients with the AG or GG genotypes (fentanyl, 
hydromorphone, morphine, meperidine) 

Henker, et al. 2013 (280) Moderate 

Clinical No significant difference in incidence of opioid-induced nausea or vomiting 
based on rs540825, rs562859, rs548646, rs1323042, rs618207, rs639855, 
rs9479757 or rs497976 genotypes (fentanyl, hydromorphone, morphine or 
meperidine) 

Laugsand, et al. 2011 (297) Moderate 

Clinical The rs1799971 GG genotype is associated with a lower score of the 'sleep 
adequacy' subscale and higher scores of the SL6 and SL9 indices on the 
MOS-Sleep questionnaire in patients taking opioids for chronic pain 

Margarit, et al. 2019 (299) Weak 

Oxycodone 

In vitro No significant difference in the clinical effect of oxycodone at mu opioid 
receptors based on the presence of the rs1799971 G allele 

Knapman, et al. 2014 (203) Moderate 

Clinical The rs6848893 CT genotype is associated with a lower subjective "High 
Quality" score of oxycodone in healthy volunteers 

Jones, et al. 2019 (298) Weak 

Clinical rs1799971 is not associated with subjective effects of oxycodone in healthy 
volunteers 

Jones, et al. 2019 (298) Weak 

Clinical Patients with the rs1799971 AG genotype have a reduced analgesic response 
to oxycodone compared to patients with the AA genotype 

Zwisler, et al. 2010 (300) Weak 

Clinical Patients with the rs1799971 GG genotype require increased oxycodone doses 
to achieve analgesia compared to patients with the AA genotype 

Cajanus, et al. 2014 (301) High 
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Clinical No significant difference in analgesic response to oxycodone based on 
rs1799971 genotype 

Zwisler, et al. 2012 (302) Weak 

Clinical The rs1799971 G and rs533586 T alleles are independently associated with a 
reduced oxycodone analgesic response to visceral pressure 

Olesen, et al. 2015 (303) Weak 

Clinical No significant difference in oxycodone analgesia to visceral heat or muscle 
pressure based on rs1799971 genotype 

Olesen, et al. 2015 (303) Weak 

Clinical The rs589046 C and rs9479757 G alleles are independently associated with a 
reduced oxycodone analgesic response to skin heat and visceral pressure 

Olesen, et al. 2015 (303) Moderate 

Clinical No significant difference in oxycodone analgesia to visceral heat or muscle 
pressure based on rs589046, rs9479757, rs533586, rs6912029 or rs563649 
genotypes 

Olesen, et al. 2015 (303) Weak 

Clinical The rs563649 T allele is associated with a 'good' oxycodone analgesic 
response to skin heat 

Olesen, et al. 2015 (303) Weak 

Clinical No significant difference in oxycodone dose requirements based on 
rs1799971 genotype 

Zwisler, et al. 2012 (302) 
Cajanus, et al. 2014 (301) 

Moderate 

Clinical Patients with the rs1799971 AG genotype have a reduced ability to maintain 
mental focus following oxycodone treatment compared to patients with the 
AA genotype 

Zwisler, et al. 2010 (300) Weak 

Clinical No significant difference in incidence of oxycodone-induced side effects 
based on rs1799971 genotype 

Zwisler, et al. 2010 (300) 
Zwisler, et al. 2012 (302) 

Weak 

Clinical No significant difference in oxycodone-induced CNS depression in infants 
based on maternal rs1799971 genotype 

Karthikeyan, et al. 2014 (155) Weak 

Pentazocine 

In vitro No significant difference in the clinical effect of pentazocine at mu opioid 
receptors based on the presence of the rs1799971 G allele 

Knapman, et al. 2014 (203) Weak 

Piritramide 
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Clinical Patients carrying the rs1799971 G allele have increased piritramide dose 
requirements compared to patients with the AA genotype 

Barstosova, et al. 2015 (304) Weak 

Remifentanil 

Clinical Remifentanil has a reduced effect on analgesic EEG results from patients 
carrying the rs1799971 G allele compared to patients with the AA genotype 

Melia, et al. 2014 (305) Weak 

Clinical Patients with the rs79910351 TT genotype do not respond to remifentanil Skorpen, et al. 2016 (277) Weak 

Clinical Patients carrying the rs1799971 G allele have an increased analgesic response 
to remifentanil compared to patients with the AA genotype 

Rhodin, et al. 2013 (306) Weak 

Clinical No significant difference in hemodynamic parameters or infant outcomes 
following cesarean section where remifentanil is used based on rs1799971 
genotype 

Bakhouche, et al. 2015 (307) Weak 

Clinical Patients with the rs2075572 GG genotype have increased remifentanil dose 
requirements compared to patients carrying the C allele 

Liu, et al. 2014 (308) Weak 

Clinical Patients with the rs558025 GG genotype have increased remifentanil dose 
requirements compared to patients carrying the A allele 

Liu, et al. 2014 (308) Weak 

Clinical Patients with the rs1799971 AG genotype have increased remifentanil dose 
requirements compared to patients with the AA genotype 

Al-Mustafa, et al. 2017 (309) Moderate 

Clinical No significant difference in remifentanil dose requirements based on 
rs1799971, rsrs599548, rs6912029 or rs9479757 genotypes 

Liu, et al. 2014 (308) Weak 

Clinical No significant difference in remifentanil-induced side effects based on 
rs2075572, rs558025, rs599548, rs6912029 or rs9479757 genotypes 

Liu, et al. 2014 (308) Weak 

Clinical Patients with the rs1799971 GG genotype have reduced postoperative nausea 
and vomiting scores following anesthesia including remifentanil compared to 
patients with the AA or AG genotypes 

Lee, et al. 2015 (310) Moderate 
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Clinical Patients with the rs1799971 AA or AG genotypes have improved 
postoperative nausea and vomiting outcomes when receiving remifentanil 
anesthesia by TIVA compared to inhalation while patients with the GG 
genotype show no difference between the two methods 

Lee, et al. 2015 (310) Weak 

Clinical No significant difference in remifentanil-induced side effects, including 
respiratory depression, based on rs1799971 genotype 

Liu, et al. 2014 (308) 
Hannam, et al. 2016 (311) 

Weak 

Sufentanil 

Clinical Patients with the rs1799971 AG genotype have a reduced analgesic response 
to sufentanil compared to patients with the AA genotype 

De Capraris, et al. 2011 (312) Weak 

Clinical Patients carrying the rs1799971 G allele have reduced sufentanil dose 
requirements compared to patients with the AA genotype 

Camorcia, et al. 2012 (313) 
Xu, et al. 2015 (314) 
Hronova, et al. 2016 (315) 

Weak 

Clinical Patients carrying the rs1799971 G allele have increased sufentanil dose 
requirements compared to patients with the AA genotype 

Bartosova, et al. 2019 (316) 
Zhao, et al. 2019 (317) 
Wang, et al. 2019 (318) 

Weak 

Clinical No significant difference in sufentanil-induced side effects, including nausea 
or pruritus, based on rs1799971 genotype 

Xu, et al. 2015 (314) 
Zhao, et al. 2019 (317) 

Weak 

Clinical No significant difference in the development of sufentanil withdrawal 
symptoms based on rs1799971 genotype 

Hronova, et al. 2016 (315) Weak 

Tramadol 

Clinical Patients carrying the rs1799971 G allele have a decreased analgesic response 
to tramadol/acetaminophen compared to patients with the AA genotype 

Liu, et al. 2012 (319) Moderate 

Clinical No significant difference in analgesic response to tramadol based on 
rs1799971 genotype 

Zhao, et al. 2014 (162) Weak 

Clinical Patients with the rs1799971 GG genotype have significantly increased 
tramadol dose requirements than patients with the AA or AG genotypes. 

Wang, et al. 2019 (318) Weak 
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Clinical Patients with the rs1799971 GG genotype have a reduced likelihood of 
experiencing tramadol-induced nausea and vomiting compared to patients 
with the AA genotype 

Kim, et al. 2010 (192) Weak 

Clinical There is no notable difference in incidence of tramadol-induced nausea and 
vomiting between patients with the rs1799971 AA genotype and patients with 
the AG genotype 

Kim, et al. 2010 (192) Weak 

Clinical No significant difference in severity of tramadol-induced adverse events 
based on the presence of the rs1799971 AG genotype 

Bastami, et al. 2014 (177) Weak 

aSee Level of Evidence section for definitions.
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SUPPLEMENTAL TABLE S3. EVIDENCE LINKING COMT GENOTYPE WITH OPIOID RESPONSE. 

Type of 
experimental 
model (in vitro, in 
vivo, preclinical, 
or clinical) 

Major findings References Level of 
Evidencea 

Codeine 
Clinical No significant difference in codeine dose requirements based on the 

COMT haplotypes CGG (H48), TCA (H29) or CCG (H30) 
Baber, et al. 2015 (71) Moderate 

Clinical No significant difference in plasma concentrations of codeine, plasma 
concentrations of morphine or morphine/codeine plasma concentration 
ratios following codeine administration based on the COMT haplotype 
CGG (H48), TCA (H29) or CCG (H30) 

Lam, et al. 2014 (95) Moderate 

Clinical No significant difference in codeine-induced CNS depression in infants 
based on rs4633, rs4818 or rs4680 genotype 

Sistonen, et al. 2012 (103) Moderate 

Fentanyl 
Clinical No significant difference in analgesic response to fentanyl based on 

rs4680 genotype 
Landau, et al. 2013 (210) Moderate 

Clinical No significant difference in fentanyl dose requirements based on rs4680 
genotype 

Mamie, et al. 2012 (216) 
Barratt, et al. 2015 (219) 
Zhang, et al. 2015 (320) 
 

High 

Clinical No significant difference in fentanyl dose requirements based on 
rs6269, rs4633 or rs4818 genotype 

Zhang, et al. 2015 (320)  High 

Clinical COMT haplotype ACCG (H23) is associated with increased fentanyl 
dose requirements compared to the GCGG (H21) and ATCA (H22) 
haplotypes 

Zhang, et al. 2015 (320) Moderate 
 

Clinical The rs4680 AA genotype is associated with occurrence of dystonia and 
parkinsonian symptoms following administration of fentanyl 

Iselin-Chaves, et al. 2009 (321) Weak 

Clinical rs4680 is not associated with the hypotensive effect of fentanyl Saiz-Rodriguez, et al. 2019 
(222) 

Weak 

Clinical The rs4680 AG genotype is associated with an increased risk of 
somnolence following administration of fentanyl 

Saiz-Rodriguez, et al. 2019 
(222) 

Weak 
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Clinical No significant difference in fentanyl-induced side effects based on 
rs6269, rs4633, rs4818 or rs4680 genotypes or the COMT haplotypes 
GCGG (H21), ATCA (H22) or ACCG (H23) 

Zhang, et al. 2015 (320) High 
 

 
Hydromorphone 
Clinical No significant difference in analgesic response to hydromorphone 

based on rs4680 genotype 
Xia, et al. 2015 (224) Moderate 

Clinical No significant difference in hydromorphone-induced side effects based 
on rs4680 genotype 

Xia, et al. 2015 (224) Moderate 
 

Methadone 
Clinical No significant difference in methadone maintenance dose based on 

rs4680 genotype 
Mouly, et al. 2015 (125) Moderate 

Morphine 
Clinical Patients carrying the rs7290221 G, rs740603 A or rs5746849 A allele 

are more likely to stop morphine treatment due to inadequate analgesia 
Ross, et al. 2008 (322) Weak 

Clinical No significant difference in analgesic response to morphine based on 
rs2097603, rs737866, rs7287550, rs174680, rs174699, rs2239393 or 
rs165728 genotypes 

Ross, et al. 2008 (322) Moderate 

Clinical No significant difference in analgesic response to morphine based on 
rs165774 or rs174696 genotypes 

De Gregori, et al. 2016 (251) Moderate 

Clinical No significant difference in analgesic response to morphine based on 
rs6269, rs4818 or rs4633 genotypes 

Ross, et al. 2008 (322) 
De Gregori, et al. 2016 (251) 

High 

Clinical Patients carrying the rs6269 G, rs4633 C or rs4818 G alleles are more 
likely to need rescue analgesia following morphine treatment 

Sadhasivam, et al. 2014 (323) Moderate 

Clinical No significant difference in analgesic response to morphine based on 
rs4680 genotype 

Ross, et al. 2008 (322) 
Lee, et al. 2016 (238) 
De Gregori, et al. 2016 (251) 
Nielsen, et al. 2017 (239) 

Moderate  

Clinical Patients with the rs4680 AA genotype have a reduced analgesic 
response to morphine as compared to patients with the GG genotype 

Ahlers, et al. 2013 (324) Moderate 

Clinical Patients with the rs4680 AG or GG genotypes are less likely to have an 
analgesic response to opioids compared to patients with the AA 
genotype 

Elens, et al. 2016 (325) Moderate 

Clinical Analgesic response to morphine increases as the number of rs4680 A 
alleles increases 

Cargnin, et al. 2013 (326) Moderate 

Clinical Patients carrying the rs4680 G allele are more likely to need rescue 
analgesia following morphine treatment 

Sadhasivam, et al. 2014 (323) 
Matic, et al. 2014 (237) 

Moderate 
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Clinical Patients with the rs4680 GG genotype take longer to achieve analgesia 
following morphine administration than patients with the AA or AG 
genotypes, while patients with the rs4680 AA genotype are quicker to 
achieve analgesia following morphine administration than patients with 
the AG or GG genotypes. 

Elens, et al. 2016 (325) Moderate 

Clinical Subjects carrying the rs4680 A allele have a reduced analgesic response 
to morphine and contact heat stimulation 

Nielsen, et al. 2017 (239) Moderate 
 

 
Clinical Patients carrying the rs4680 G allele have increased morphine dose 

requirements compared to the AA genotype 
Rakvag, et al. 2005 (327) 
Matsuoka, et al. 2012 (256) 
Tan, et al. 2016 (328) 
De Gregori, et al. 2013 (257) 
Rakvag, et al. 2008 (329) 
Kolesnikov, et al. 2011 (254) 
Rakvag, et al. 2005 (327) 
Mamie, et al. 2013 (216) 
Somogyi, et al. 2016 (243) 
Khalil, et al. 2017 (285) 
Hajj, et al. 2017 (252) 
Matsuoka, et al. 2012 (256) 
Li, et al.  2019 (253) 

Moderate 
 
 
 

Clinical Patients with the rs4680 AG genotype have increased morphine dose 
requirements compared to patients with the GG genotype 

Oliveira, et al. 2014 (249) Weak 

Clinical Patients with the rs4680 GG genotype have increased rescue morphine 
dose requirements compared to the AA or AG genotypes 

Matic, et al. 2014 (237) Weak 

Clinical Patients carrying the rs740603 A, rs6269 A or rs4818 C alleles require 
a lower dose of morphine 

Rakvag, et al. 2008 (329) 
Li, et al.  2019 (253) 

Weak 

Clinical Patients carrying the rs5746849 A or rs2239393 A alleles require lower 
doses of morphine 

Rakvag, et al. 2008 (329) Moderate 

Clinical Patients with the rs4818 CC have increased morphine requirements 
compared to patients with the CG or GG genotypes. 

Tan, et al. 2016 (328) 
Sadhasivam, et al. 2014 (323) 

Weak 

Clinical No significant difference in morphine dose requirements based on 
rs2075507, rs737866, rs7287550 or rs174699 genotypes 

Rakvag, et al. 2008 (329) Moderate 

Clinical Weight-adjusted morphine consumption increases as the number of 
rs4633 C alleles increases 

Tan, et al. 2016 (328) High 

Clinical rs4633 is not associated with morphine dose requirements Li, et al.  2019 (253) Weak 
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Clinical Patients carrying the COMT haplotype GACAAAACATT (H14) 
require lower doses of morphine 

Rakvag, et al. 2008 (329) Moderate 

Clinical The COMT haplotype ACCG (H23) is associated with decreased 
morphine requirements 

Huehne, et al. 2009 (255) 
Li, et al.  2019 (253) 

Moderate 

Clinical No significant difference in morphine dose requirements based on the 
COMT haplotypes GCGG (H21) or ATCA (H22) 

Huehne, et al. 2009 (255) Moderate 

Clinical Patients who are homozygous for the COMT haplotype ATCA (H22) 
have reduced morphine dose requirements compared to other diplotypes 

De Gregori, et al. 2013 (257) Moderate 

Clinical No significant difference in morphine dose requirements based on the 
COMT haplotypes AGAGGGGGGTT (H15), AATGGAACATT 
(H16), AATGGGGGGTT (H17), GACAAGGGGTT (H18), 
AATAAAACATT (H19) or GACGGGGGGTT (H20) 

Rakvag, et al. 2008 (329) Moderate 

Clinical Patients with the rs4680 GG genotype have increased serum 
concentrations of morphine, morphine-3-glucuronide and morphine-6-
glucuronide compared to patients with the AA or AG genotypes. 

Rakvag, et al. 2005 (327) Weak 

Clinical Patients carrying the rs7290221 G, rs5746849 A or rs740603 A alleles 
are more likely to  stop morphine treatment due to side effects 

Ross, et al. 2008 (322) Moderate 

Clinical No significant difference in incidence of morphine-induced side effects 
based on rs7290221 or rs5746849 genotypes 

Jimenez, et al. 2012 (261) Weak 

Clinical Patients carrying the G allele of rs740603 are less likely to experience 
morphine-induced central side effects (drowsiness, confusion, 
hallucinations, nightmares) 

Ross, et al. 2008 (322) Moderate 

Clinical No significant difference in incidence of morphine-induced side effects, 
including postoperative nausea and vomiting, based on rs740603 
genotype 

Jimenez, et al. 2012 (261) 
Somogyi, et al. 2016 (243) 

Moderate 

Clinical Patients carrying the T allele of rs174680 are less likely to experience 
morphine-induced central side effects (drowsiness, confusion, 
hallucinations, nightmares) 

Ross, et al. 2008 (322) Moderate 

Clinical The rs4680 AA genotype is associated with occurrence of dystonia and 
parkinsonian symptoms following administration of morphine 

Iselin-Chaves, et al. 2009 (321) Weak 

Clinical Patients carrying the rs4680 A allele have lower morphine-induced 
nausea scores compared to patients with the GG genotype. 

Kolesnikov, et al. 2011 (254) Moderate 

Clinical No significant difference in morphine-induced side effects based on 
rs4680 or rs7297550 genotypes 

Ross, et al. 2008 (322) 
Jimenez, et al. 2012 (261) 

Moderate 
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Clinical No significant difference in morphine-induced side effects based on 
rs2097603, rs737866, rs6269, rs4633, rs2239393, rs174699, rs174680 
or rs165728 genotypes 

Ross, et al. 2008 (322) 
Jimenez, et al. 2012 (261) 

Moderate 

Clinical Patients carrying the COMT haplotypes AATTGAAATAATT (H1) or 
(add sequence) H3 are less likely to experience morphine-induced 
central side effects (drowsiness, confusion, hallucinations, nightmares) 

Ross, et al. 2008 (322) Moderate 

Clinical No significant difference in morphine-induced central side effects 
(drowsiness, confusion, hallucinations, nightmares) based on the 
COMT haplotypes  GACCCGGGCGGTT (H4), AATTGAAGCGGTT 
(H5), AATTCAAACAGTT (H6), AATTCGGACAGCC (H7), 
AATTCGGATAATT (H8), AGCCCGGATAATT (H9), 
GACCGAAGCGGTT (H10), AGCCGAAATAATT (H11), 
AATCGAAATAATT (H12) or AATTCGAGCGGTT (H13) 

Ross, et al. 2008 (322) Moderate 

Naloxone 
Clinical Patients with the rs4680 AA genotype have an increased ACTH peak, 

ACTH AUC and more rapid increases and decreases in ACTH response 
to naloxone than patients carrying the G allele. 

Oswald, et al. 2004 (330) Weak 

Clinical Patients with the rs4680 AA genotype have an increased cortisol AUC 
and a more rapid increase in cortisol response to naloxone than patients 
carrying the G allele. 

Oswald, et al. 2004 (330) Weak 

Opioid 
Clinical No significant difference in opioid dose requirements based on rs4680 

genotype (buprenorphine, dihydrocodeine, fentanyl, hydromorphone, 
meperidine, (R)-methadone, morphine, oxycodone, piritramide, tilidine, 
tramadol and unspecified opioids) 

Lötsch, et al. 2009 (29) 
Klepstad, et al. 2011 (279) 
Henker, 2013 (280) 
Thomazeau, et al. 2016 (281) 
Wang, et al. 2019 (318) 
Margarit, et al. 2019 (283) 

Moderate 

Clinical Patients with the rs4680 GG genotype have increased opioid dose 
requirements compared to patients with the AA or AG genotypes 
(buprenorphine, fentanyl, hydromorphone, morphine, oxycodone, 
unspecified opioids) 

Candiotti, et al. 2014 (331) 
Wesmiller, et al. 2017 (332) 
Matic, et al. 2017 (282) 
Lucenteforte, et al. 2019 (333) 

Moderate 

Clinical Patients with the rs4680 AA genotype have increased opioid dose 
requirements compared to patients with the AG genotype 
(hydromorphone, oxycodone, buprenorphine, fentanyl, morphine and 
unspecified opioids) 

Wesmiller, et al. 2017 (332) 
Matic et al. 2017 (282) 

Moderate 
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Clinical The rs4680 AA and AG genotypes are associated with increased opioid 
consumption compared to the GG genotype 

Hooten, et al. 2019 (334) Moderate 

Clinical No significant difference in opioid dose requirements based on rs4633 
genotype (hydromorphone, oxycodone, buprenorphine, fentanyl, 
meperidine, morphine and unspecified opioids) 

Klepstad, et al. 2011 (279) 
Henker, et al. 2013 (280) 
Matic, et al. 2017 (282) 

Moderate 

Clinical No significant difference in opioid dose requirements based on 
rs2020917, rs5993882, rs4646312 or rs165722 genotypes (unspecified 
opioids) 

Klepstad, et al. (279) Moderate 

Clinical Patients with the rs4818 GG genotype have reduced opioid dosing 
requirements compared to patients with the AA or AG genotypes 
(buprenorphine, fentanyl, hydromorphone, morphine, meperidine, 
oxycodone) 

Henker, et al. 2013 (280) 
Candiotti, et al. 2014 (331) 
Matic, et al. 2017 (282) 

Moderate 

Clinical No significant difference in opioid dose requirements based on rs6269 
genotype (fentanyl, hydromorphone, morphine or meperidine) 

Henker, et al. 2013 (280) Weak 

Clinical PGx-guided prescription of opioids, including COMT variants, results 
in reduced requirement for opioids (unspecified opioids) 

Senagore, et al. 2017 (137) Weak 

Clinical No significant difference in opioid dose requirements based on the 
COMT haplotypes CGG (H48), TCA (H29) or CCG (H30) 
(hydromorphone, oxycodone, buprenorphine, fentanyl, morphine) 

Matic, et al. 2017 (282) Moderate 

Clinical Patients carrying one copy of the COMT haplotype GCGG (H21) have 
increased opioid requirements (fentanyl, hydromorphone, morphine or 
meperidine) 

Henker, et al. 2013 (280) Weak 

Clinical No significant difference in opioid dose requirements based on the 
COMT haplotypes ATCA (H22), ACCG (H23), ATCG (H24), GCGA 
(H25), ACCA (H26), GTGG (H27) or ACGA (H28) (fentanyl, 
hydromorphone, morphine or meperidine) 

Henker, et al. 2013 (280) Weak 

Clinical Infants with neonatal abstinence syndrome and the rs4680 AG or GG 
genotype have shorter hospital stays and are less likely to require 
treatment with two or more medications compared to infants with the 
AA genotype (hydromorphone, oxycodone, buprenorphine, fentanyl, 
morphine) 

Matic, et al. 2017 (282) Moderate 

Clinical No significant difference in length of hospital stay for treatment of 
neonatal abstinence syndrome or number of medications needed to treat 
neonatal abstinence syndrome based on maternal rs4680 genotype 
(buprenorphine, methadone) 

Wachman, et al. 2013 (288) Moderate 
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Clinical  Mothers carrying the rs4680 G or rs740603 A alleles are less likely to 
have infants who require two medications to treat neonatal abstinence 
syndrome (buprenorphine, methadone) 

Wachman, et al. 2017 (335) Moderate 

Clinical  No significant difference in likelihood of requiring treatment for 
neonatal abstinence syndrome based on infant rs4633, rs4818, rs4680 
or rs6269 genotype (methadone) 

Mactier, et al. 2017 (140) Weak 

Clinical  A allele of rs4680 is more frequent in opioid-dependent patients than in 
non-dependent controls in family-based haplotype relative risk study. 
(unspecified opioids) 

Horowitz, et al. 2000 (336) Weak 

Clinical  The rs4680 AA and AG genotypes are associated with increased 
likelihood of developing opioid dependence (unspecified opioids) 

Oosterhuis, et al. 2008 (337) 
 

Weak 

Clinical  The A allele of rs4680 is associated with decreased likelihood of 
developing opioid dependence (heroin) 

Levran, et al. 2015 (338) Weak 

Clinical  The rs4680 AA genotype is more frequent in living opioid-dependent 
patients than in deceased opioid-dependent patients (unspecified 
opioids) 

Christoffersen, et al. 2016 (141) Moderate 

Clinical  No significant difference in likelihood of developing opioid dependence 
based on rs4680 genotype (heroin, unspecified opioids) 

Horowitz, et al. 2000 (336) 
Demetrovics, et al. 2010 (339) 
Yang, et al. 2012 (340) 
Voisey, et al. 2011 (341) 
Vereczkei, et al. 2013 (342) 
Christoffersen, et al. 2016 (141) 

Moderate 

Clinical  No significant difference in likelihood of developing opioid dependence 
based on rs4818, rs8192488 or rs4633 genotypes (unspecified opioids) 

Oosterhuis, et al. 2008 (337) 
Christoffersen, et al. 2016 (141) 

Moderate 

Clinical  No significant difference in likelihood of developing opioid dependence 
based on rs165774 genotype (unspecified opioids) 

Voisey, et al. 2011 (341) Weak 

Clinical The rs4680 AA and GG genotypes are associated with a higher 
incidence of adverse events, including vomiting and sexual dysfunction, 
in patients participating in an opioid deprescription program 

Muriel, et al. 2019 (296) Weak 

Clinical  The rs165722 C, rs4633 T and rs4680 G alleles are associated with 
reduced intensity of opioid-induced nausea/vomiting (unspecified 
opioids) 

Laugsand, et al. 2011 (297) Weak 

Clinical  rs4680 is not associated with opioid side effects, including sedation 
(buprenorphine, dihydrocodeine, fentanyl, hydromorphone, meperidine,  
(R)-methadone, morphine, oxycodone, piritramide, tilidine, tramadol) 

Lötsch, et al. 2009 (29) 
Henker, et al. 2013 (280) 
Margarit, et al. 2019 (283) 

Moderate 
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Clinical  No significant difference in the intensity of opioid-induced 
nausea/vomiting based on rs2020917, rs5993882 or rs4646312 
genotypes (unspecified opioids) 

Laugsand, et al. 2011 (297) Moderate 
 

 
Clinical  No significant difference in opioid-induced sedation based on rs4818, 

rs6269 or rs4633 genotypes (fentanyl, hydromorphone, morphine, 
meperidine) 

Henker, et al. 2013 (280) 
 

Weak 

Clinical  COMT haplotypes TCA (H29) and CCG (H30) are independently 
associated with increased opioid sensitivity, as measured by opioid-
induced respiratory depression (fentanyl, hydromorphone, morphine) 

Madadi, et al. 2013 (142) Weak 

Oxycodone 
Clinical The rs4680 AA and AG genotypes are associated with an increased 

subjective "Stimulated" response to oxycodone in healthy volunteers 
compared to the GG genotype 

Jones, et al. 2019 (298) Weak 

Clinical rs165599 and rs737865 are not associated with subjective responses to 
oxycodone in healthy volunteers 

Jones, et al. 2019 (298) Weak 

Clinical  The rs4818 GG and rs6269 GG genotypes are associated with an 
adequate analgesic response to oxycodone 

Lee, et al. 2011 (343) Weak 

Clinical  No significant difference in oxycodone dose requirements based on 
rs6518591, rs737866, rs887200, rs737865, rs1544325, rs8185002, 
rs174675, rs5993882, rs740603, rs4646312, rs4633, rs2239393, rs4818, 
rs4680, rs4646316, rs165774, rs174696, rs9306235, rs9332377, 
rs165599, rs887199 or rs2518824  genotypes or the COMT haplotypes 
AATATCT (H31), AGCGGCT (H32), GATGTTG (H33), AATGTTG 
(H34), AATGTTT (H35), TTACACA (H36), CCGGGCG (H37), 
TTACACG (H38), CCGGGTG (H39), TTACATG (H40), TCACGCG 
(H41), CGAGC (H42), CGATC (H43), TGGGT (H44), CGATT (H45), 
TGGTT (H46) or CAGTT (H47) 

Kambur, et al. 2013 (344) Moderate 

Remifentanil 
Clinical  No significant difference in analgesic effect of remifentanil based on 

rs4680 genotype 
Jensen, et al. 2009 (345) Weak 

Sufentanil 
Clinical  Patients with the rs4680 GG genotype have increased sufentanil dosing 

requirements compared to patients with the AA genotype 
Hronova, et al. 2016 (315) Weak 

Clinical  No significant difference in sufentanil dosing requirements based on 
rs4633 or rs4818 genotypes 

Hronova, et al. 2016 (315) Weak 
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Clinical  No significant difference in sufentanil-induced withdrawal syndrome 
based on rs4680, rs4633 or rs4818 genotypes 

Hronova, et al. 2016 (315) 
 

 

Weak 

Tramadol 
Clinical  No significant difference in analgesic response to tramadol based on 

rs4680 genotype 
Zhao, et al. 2014 (162) Moderate 

aSee Level of Evidence section for definitions. 
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SUPPLEMENTAL TABLE S4. EVIDENCE LINKING COMT AND OPRM1 GENOTYPE WITH OPIOID RESPONSE. 

Type of 
experimental 
model (in vitro, 
in vivo 
preclinical, or 
clinical)  

Major findings  References Level of 
Evidence 

Clinical Patients with the OPRM1 rs1799971 AA genotype and the 

COMT rs4680 AA genotype have a lower analgesic response to 
fentanyl as compared to other genotype combination groups 

Landau, et al. 2013 (210) Weak 

Clinical Patients with the OPRM1 rs1799971 AA genotype and the 
COMT rs4680 AA genotype require decreased morphine doses 

compared to other genotype combination groups 

Reyes-Gibby, et al. 2007 (346) 
DeGregori, et al. 2013 (257) 

Moderate 

Clinical Patients with the OPRM1 rs1799971 AG genotype and the 

COMT rs4680 AG genotype require decreased morphine doses 
compared to patients with the rs1799971 AA genotype 

Kolesnikov, et al. (254) Weak 

Clinical Patients with the OPRM1 rs1799971 AG genotype and the 

COMT rs4680 AG genotype have lower morphine-induced 
nausea scores compared to patients with the rs1799971 

genotype 

Kolesnikov, et al. (254) Weak 

Clinical Combined OPRM1 rs1799971 and COMT rs4680 genotype is 

not associated with length of hospital stay for treatment of 
neonatal abstinence syndrome 

Wachman, et al. 2013 (288) Weak 

Clinical Combined OPRM1 rs1799971 and COMT rs4680 genotype is 
not associated with number of medications used in treatment of 

neonatal abstinence syndrome 

Wachman, et al. 2013 (288) Weak 

Clinical Patients carrying the OPRM1 rs1799971 G allele and the 

COMT rs4680 GG genotype are more likely to require rescue 
morphine compared to other genotypes 

Matic, et al. 2014 (237) Moderate 
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Clinical Combined OPRM1 rs1799971 and COMT rs4680 genotype is 

not associated with rescue morphine dose requirements 

Matic, et al. 2014 (237) Weak 

Clinical Combined OPRM1 rs1799971 and COMT rs4633, rs4818 and 
rs4680 genotypes are not associated with morphine 

consumption 

Tan, et al. 2016 (328) Weak 

Clinical Patients with the combined OPRM1 rs1799971 G allele and 

COMT rs4680 AA genotype have increased opioid dose 
requirements compared to other genotype combinations 

Khalil, et al. 2017 (285) Weak 

Clinical Patients with the combined OPRM1 rs1799971 G allele and 

COMT rs4633 TT genotype have increased opioid dose 
requirements compared to other genotype combinations 

Khalil, et al. 2017 (285) Weak 

Clinical Combined OPRM1 rs1799971 and COMT rs6269 genotype is 

not associated with opioid dose requirements 

Khalil, et al. 2017 (285) Weak 

Clinical Combined OPRM1 rs1799971 and COMT rs4818 genotype is 
not associated with opioid dose requirements 

Khalil, et al. 2017 (285) Weak 

Clinical Patients carrying the OPRM1 rs1799971 G allele and the 
COMT rs4680 GG genotype have increased opioid dose 

requirements compared to patients with the OPRM1 rs1799971 
AA genotype and carrying the COMT rs4680 A allele 

Matic, et al. 2017 (282) Moderate 
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SUPPLEMENTAL TABLE S5. OXYCODONE THERAPY RECOMMENDATIONS BASED ON CYP2D6 PHENOTYPE  

Phenotype Activity 
Score 

Implications  Recommendations  Classification of 
recommendationa 

Considerations  

CYP2D6 
ultrarapid 

metabolizer 

> 2.25 Increased metabolism 
to active metabolite, 

oxymorphone, but this 
does not appear to 

translate into increased 
analgesia or side 

effects. 

No recommendation for 
oxycodone therapy because 

of weak evidence regarding 
adverse events or 

analgesia.  

No 
recommendation 

CPIC defines “weak” 
evidence as insufficient 

to assess the effects on 
health outcomes because 

of limited number or 
power of studies, 

important flaws in their 
design or conduct, gaps 

in the chain of evidence, 
or lack of information. 

Further research may 
change the magnitude 

and/or direction of the 
net effect.  

 

CYP2D6 

normal 
metabolizer 

1.25≤x≤2.25 Expected 

oxymorphone 
formation 

Use oxycodone label 

recommended age- or 
weight-specific dosing. 

Strong  
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aRating scheme described in the Strength of Recommendations section.

CYP2D6 

intermediate 
metabolizer  

0<x<1.25 Decreased metabolism 

of oxycodone to active 
metabolite 

oxymorphone,  but 
this does not appear to 

translate into 
decreased analgesia or 

side effects. 

No recommendation for 

oxycodone therapy because 
of weak evidence regarding 

adverse events or 
analgesia.  

No 

recommendation 

CPIC defines “weak” 

evidence as insufficient 
to assess the effects on 

health outcomes because 
of limited number or 

power of studies, 
important flaws in their 

design or conduct, gaps 
in the chain of evidence, 

or lack of information. 
Further research may 

change the magnitude 
and/or direction of the 

net effect.  

CYP2D6 poor 
metabolizer 

0 Decreased metabolism 
of oxycodone to active 

metabolite 
oxymorphone,  but 

this does not appear to 
translate into 

decreased analgesia or 
side effects. 

No recommendation for 
oxycodone therapy because 

of inconsistent evidence 
regarding adverse events or 

analgesia.  

No 
recommendation 

Inconsistent evidence 
indicates both supporting 

and non-supporting 
evidence for an 

association between 
oxycodone use and 

adverse events, or 
analgesia. 

CYP2D6 
Indeterminate 

n/a n/a No recommendation No 
recommendation 

n/a 
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SUPPLEMENTAL TABLE S6. METHADONE THERAPY RECOMMENDATIONS BASED ON CYP2D6 PHENOTYPE 

Phenotype Activity 
Score 

Implications  Recommendations  Classification of 
recommendationa 

CYP2D6 
ultrarapid 

metabolizer 

> 2.25 No effect or insufficient evidence 
for methadone adverse events, 

opioid dose requirements, or 
analgesia. 

No recommendation  No recommendation 

CYP2D6 
normal 

metabolizer 

1.25≤x≤2.25 Expected metabolism Use methadone label 
recommended age- or 

weight-specific dosing. 

Strong 

CYP2D6 

intermediate 
metabolizer  

0<x<1.25 No effect or insufficient evidence 

for methadone adverse events, 
opioid dose requirements, or 

analgesia. 

No recommendation  No recommendation 

CYP2D6 poor 
metabolizer 

0 No effect or insufficient evidence 
for methadone adverse events, 

opioid dose requirements, or 
analgesia. 

No recommendation  No recommendation 

CYP2D6 
indeterminate 

n/a n/a No recommendation No recommendation 
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SUPPLEMENTAL TABLE S7. MORPHINE THERAPY RECOMMENDATIONS BASED ON OPRM1 GENOTYPE  

aRating scheme described in the Strength of Recommendations section. 

Genotype Implications  Recommendations  Classification of 
recommendationa 

Considerations  

rs1799971 G  The rs1799971 G allele is 
associated with small but 

statistically significant 
decreases in analgesia 

and/or increases in 
morphine requirements in 

some studies. However, 
this does not appear to 

translate into clinically 
actionable dose 

alterations.  

No recommendation  No 
recommendation 

Most publications focus on  
morphine for postoperative 

pain. Many factors contribute 
to variability in postoperative 

morphine response including 
age, psychological status, 

tolerance, surgery type and 
duration, genetics and 

presurgical pain and opioid 
use. Due to the marginal 

difference in dose between 
genotypes and numerous 

other factors affecting this 
outcome, the safest 

recommendation is to “start 
low and go slow.”  

 

Other variants No effect or insufficient 

evidence for morphine 
adverse events, opioid 

dose requirements, or 
analgesia. 

No recommendation No 

recommendation 
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SUPPLEMENTAL TABLE S8. FENTANYL THERAPY RECOMMENDATIONS BASED ON OPRM1 GENOTYPE  

aRating scheme described in the Strength of Recommendations section.

Genotype Implications  Recommendations  Classification of 
recommendationa 

Considerations  

rs1799971 G No effect for fentanyl 
adverse events and 

analgesia. Mixed evidence 
for an association between 

OPRM1 rs1799971 and 
fentanyl dose 

requirements.  

No recommendation No 
recommendation 

Many factors contribute to 
variability in fentanyl 

response including age, 
psychological status, 

tolerance, surgery type and 
duration, genetics and 

presurgical pain and opioid 
use. 

 

Other variants No effect or insufficient 

evidence for fentanyl 
adverse events, opioid 

dose requirements, or 
analgesia. 

No recommendation No 

recommendation 

Many factors contribute to 

variability in fentanyl 
response including age, 

psychological status, 
tolerance, surgery type and 

duration, genetics and 
presurgical pain and opioid 

use. 
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SUPPLEMENTAL TABLE S9. OTHER OPIOIDS (ALFENTANIL, BUPRENORPHINE, CODEINE, HYDROCODONE, 

HYDROMORPHONE, LEVOMETHADONE, METHADONE, NALTREXONE, OXYCODONE, REMIFENTANIL, 

SUFENTANIL, AND TRAMADOL) THERAPY RECOMMENDATIONS BASED ON OPRM1 GENOTYPE   

aRating scheme described in the Strength of Recommendations section. 

 

 

Genotype Implications  Recommendations  Classification of 
recommendationa 

Considerations  

rs1799971 G No effect or insufficient 

evidence for adverse 
events, opioid dose 

requirements, analgesia, 
or change in opioid 

dependence/withdrawal 
therapy.  

No recommendation  No 

recommendation 

Many factors contribute to 

variability in postoperative 
opioid response including age, 

psychological status, 
tolerance, surgery type and 

duration, genetics and 
presurgical pain and opioid 

use. 
 

Other variants No effect or insufficient 
evidence for opioid 

adverse events, opioid 
dose requirements, 

analgesia, or change in 
opioid 

dependence/withdrawal 
therapy. 

No recommendation No 
recommendation 

Many factors contribute to 
variability in postoperative 

opioid response including age, 
psychological status, 

tolerance, surgery type and 
duration, genetics and 

presurgical pain and opioid 
use. 
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SUPPLEMENTAL TABLE S10. OPIOID THERAPY RECOMMENDATIONS BASED ON COMT GENOTYPE   

aRating scheme described in the Strength of Recommendations section. 

 

 

 

Genotype Implications  Recommendations  Classification of 
recommendationa 

Considerations  

rs4680 A No effect for opioid 
adverse events. 

Insufficient evidence for 
an association between  

COMT rs4680 genotype, 
analgesia and opioid dose 

requirements. 

No recommendation  No 
recommendation 

Many factors contribute to 
variability in opioid response 

including other gene variants, 
age, psychological status, 

indication and duration of 
opioid use.  

Mixed evidence indicates 
both supporting and non-

supporting evidence for an 
association with neither 

direction dominating. 
 

Other variants Insufficient evidence for 
an association between 

COMT genotype, 
analgesia, opioid dose 

requirements and adverse 
events. 

No recommendation No 
recommendation 

Many other factors contribute 
to variability in opioid 

response including other gene 
variants, age, psychological 

status, indication and duration 
of opioid use. 

 



CPIC Guidelines for CYP2D6, OPRM1, and COMT genotype and select opioid therapy – 
Supplement v.3.0      75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE S1. CODEINE METABOLISM. Permission has been given by PharmGKB and 

Stanford to use figure (https://www.pharmgkb.org/pathway/PA146123006) (37). Pathway 

images and data are available under a Creative Commons BY-SA 4.0 license. 
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FIGURE S2. TRAMADOL METABOLISM. Permission has been given by PharmGKB and 

Stanford to use figure (https://www.pharmgkb.org/pathway/PA165946349) (347). Pathway 

images and data are available under a Creative Commons BY-SA 4.0 license. 
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FIGURE S3. HYDROCODONE METABOLISM. Permission has been given by PharmGKB 

and Stanford to use figure (https://www.pharmgkb.org/pathway/PA166221421) (348). Pathway 

images and data are available under a Creative Commons BY-SA 4.0 license. 
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FIGURE S4. OXYCODONE METABOLISM. Permission has been given by PharmGKB and 

Stanford to use figure (https://www.pharmgkb.org/pathway/PA166170927) (349). Pathway 

images and data are available under a Creative Commons BY-SA 4.0 license. 
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