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GUIDELINE UPDATES 

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for 

CYP2B6 and methadone therapy is published in full on the CPIC website 

(https://cpicpgx.org/cpic-guideline-for-methadone-based-on-cyp2b6-genotype/) (1). Relevant 

information will be reviewed periodically, and updated guidelines published online.  

 

LITERATURE REVIEW 

The PubMed® database (1966 to December 2022) was searched for the following 

keywords: (CYP2B6 OR cytochrome P450 2B6) AND (methadone). The search was limited to 

studies conducted in humans and written in the English language, and review articles were 

excluded.  Using these search terms, 103 publications were identified. Study inclusion criteria 

included publications that incorporated analyses for the association between CYP2B6 genotype 

and methadone pharmacokinetic parameters or methadone-related clinical outcomes in patients. 

Following the application of these criteria, 46 publications were reviewed and included in the 

evidence tables (Table S1).  

 

GENETIC TEST INTERPRETATION 

The haplotype, or star (*) allele name, is determined by the presence of a specific single 

nucleotide variant (SNV) or a combination of SNVs that are interrogated in the genotyping 

analysis. In addition, two structural variants (2) have received star allele designation 

(CYP2B6*29 and *30) and appear to be rare (minor allele frequency [MAF] <1%) in the 

populations tested (~0.005% in African Americans and Asians, respectively).   

https://cpicpgx.org/cpic-guideline-for-methadone-based-on-cyp2b6-genotype/
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The genotypes that constitute the haplotype, or star (*) alleles for CYP2B6, and the rsIDs 

for each of the specific genomic nucleotide alterations that define the alleles, are per PharmVar 

(https://www.pharmvar.org/gene/CYP2B6) and also described in the CYP2B6 Allele Definition 

Table online (1, 3). The genotype results are generally reported as a diplotype, which includes 

one maternal and one paternal star allele (e.g., *1/*6). The CYP2B6 function associated with 

each of the common star alleles is summarized in the CYP2B6 Allele Functionality Table 

online (1, 3).  

 

AVAILABLE GENETIC TEST OPTIONS 

Commercially available genetic testing options change over time. The Genetic Testing 

Registry provides a central location for voluntary submission of genetic test information by 

providers and is available at: http://www.ncbi.nlm.nih.gov/gtr. Desirable characteristics of 

pharmacogenetic tests, including naming of alleles and test report contents, have been 

extensively reviewed by an international group, including CPIC members (4). CPIC recommends 

that clinical laboratories adhere to these test reporting standards. CPIC gene-specific tables 

adhere to these allele nomenclature standards. Moreover, these tables (CYP2B6 Allele 

Definition Table, CYP2B6 Allele Functionality Table, and CYP2B6 Allele Frequency Table 

(1, 3)) may be used to assemble lists of known functional and actionable pharmacogenetic 

variants and their population frequencies, which may inform decisions as to whether tests are 

adequately comprehensive in interrogations of alleles.  

Because the genomic structure of the CYP2B6 gene is complex, there are several factors 

that cause potential uncertainty in the genotyping results and phenotype predictions. 1) Since it is 

impractical to test for every variant in the CYP2B6 gene, patients with rare variants may be 

http://www.ncbi.nlm.nih.gov/gtr
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assigned a default genotype; this can happen when a patient has one or two rare allele(s) that are 

not included in the genotype test used. Several variants of the CYP2B6 gene with potential 

functional consequences are rare (MAF <1%) in most populations, and thus sequencing-based 

approaches may be recommended in certain situations. 2) Structural variants containing a 

CYP2B7::CYP2B6 hybrid (CYP2B6*29, switch in intron 4) or a CYP2B6::CYP2B6 hybrid 

(CYP2B6*30, switch in intron 4) have been described; the CYP2B7-derived portions introduce 

numerous amino acid changes (see the PharmVar Structural Variation document available at 

https://www.pharmvar.org/gene/CYP2B6  for more details). CYP2B6*29 harbors a singleton 

hybrid while that in CYP2B6*30 is part of a duplication structure. Since the nature of the 

CYP2B6 gene copy has not been determined (may be a *1, *4 or *6), the function of this 

structure remains uncertain. Phenotype may not be accurately predicted in rare cases if these 

structural variants are not detected. Specifically, if copy number testing targets exons 1 through 

4, CYP2B6*30 could be misclassified as CYP2B6*1x2, which predicts an UM phenotype. Copy 

number testing should  ideally query different gene regions and may also require long-range 

PCR-based amplification and sequencing to more fully characterize the hybrid genes and assess 

whether the allele has a singleton hybrid or a hybrid in addition to a CYP2B6 gene copy (2).  

Given the rarity and complexity of detecting and characterizing such structural variants, these are 

typically not included in CYP2B6 genotyping test platforms. 3) Some SNVs exist on multiple 

alleles (e.g., c.516G>T is found in combination with other variants in 16 other CYP2B6 alleles 

[*6, *7, *13, *19, *20, *26, *29, *34, *36, *37, *38, *39, *40, *41, *42, *43]) (Figure S5).  If 

testing indicates heterozygosity for multiple SNVs, it may be difficult to accurately assign a 

specific genotype. For example, an individual heterozygous for the c.516G>T, c.785A>G, and 

c.1459C>T variants in the CYP2B6 gene could be classified as CYP2B6*1/*7 or *5/*6 unless 

https://www.pharmvar.org/gene/CYP2B6
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methods are available that allow distinguishing between these two genotypes on a routine basis 

(5). 4) Allele frequencies may vary considerably among patients of different biogeographical 

ancestry groups. For example, CYP2B6*18 and other rare variants are relatively common in 

African ancestry populations and have a considerably lower prevalence, or are even absent (to 

date), in other ethnic groups such as those of European ancestry. Thus, the alleles that should be 

tested to predict phenotype for a given population may vary considerably. Given the limited 

numbers of individuals tested in many populations to date, and the heterogeneity of any given 

population, the ideal case would be to test for as many alleles as possible in all populations.  5) 

As described above, both CYP2B6*29 and CYP2B6*30 require complementary assays including 

sequencing to distinguish between the two variants. 6) The possibility that rare SNVs or 

pseudogenes may interfere with PCR amplification and/or detection on a particular platform or 

assay cannot be ruled out. (6). For example, testing for c.785A>G is challenging using the 

commercially available TaqMan assay. This SNV is located in a region that is identical to 

CYP2B7, a nonfunctional pseudogene. Small CYP2B6-specific PCR amplicons bracketing 

c.785A>G cannot be reliably generated. Thus, the genotype assay is often performed in two steps 

where exon 5 is first amplified with primers and then a pre-amplified CYP2B6-specific long-

range PCR amplicon is used as a template for a custom TaqMan genotyping assay.  

 

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE 

The evidence summarized in Table S1 is graded on a scale of high, moderate, and weak 

based upon the level of evidence:  

 High: Evidence includes consistent results from well-designed, well-conducted studies. 
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Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is 

limited by the number, quality or consistency of the individual studies, generalizability to 

routine practice, or the indirect nature of the evidence. 

Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, gaps in 

the chain of evidence, or lack of information.  

 

STRENGTH OF RECOMMENDATIONS 

CPIC’s therapeutic recommendations are based on weighing the evidence from a 

combination of preclinical functional and clinical data, as well as on some existing disease-

specific consensus guidelines. Some of the factors that are taken into account in evaluating the 

evidence supporting therapeutic recommendations include in vivo pharmacokinetic and 

pharmacodynamic data, in vitro enzyme activity of tissues expressing reference or non-reference 

CYP2B6, in vitro CYP2B6 enzyme activity from tissues isolated from individuals of known 

CYP2B6 genotypes, and in vivo pre-clinical and clinical pharmacokinetic and pharmacodynamic 

studies.  

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for 

recommendations adopted from the rating scale for evidence-based guidelines on the use of 

antiretroviral agents (7): 

• Strong recommendation for the statement: The evidence is high quality, and the desirable 

effects clearly outweigh the undesirable effects. 
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• Moderate recommendation for the statement: There is a close or uncertain balance as to 

whether the evidence is high quality, and the desirable effects clearly outweigh the 

undesirable effects. 

• Optional recommendation for the statement: The desirable effects are closely balanced 

with undesirable effects, or the evidence is weak or based on extrapolations. There is 

room for differences in opinion as to the need for the recommended course of action. 

• No recommendation: There is insufficient evidence, confidence, or agreement to 

provide a recommendation to guide clinical practice at this time. 
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TABLE S1. EVIDENCE LINKING CYP2B6 TO METHADONE PHENOTYPE 
 
Type of 
Experimental 
Model 

Major Findings References Level of 
Evidencea 

Microsomes 
In vitro Microsomes expressing CYP2B6*6, *7 and *9 had decreased 

racemic, R-, and S-methadone metabolism compared to 
microsomes expressing CYP2B6*1. 

Gadel, et al. (2013) (8) 
Gadel, et al. (2015) (9) 
Wang, et al. (2022) (10) 

High  
 
 

In vitro Microsomes expressing CYP2B6*4 had increased R- and S-
methadone metabolism compared to microsomes expressing 
CYP2B6*1. 

Gadel, et al. (2015) (9) 
Wang, et al. (2022) (10) 

Moderate  
 

In vitro Microsomes expressing CYP2B6*18 had no methadone 
metabolism.  

Gadel, et al. (2015) (9) 
Wang, et al. (2022) (10) 

High  
 

In vitro Microsomes expressing CYP2B6*5 had decreased methadone 
metabolism compared to microsomes expressing CYP2B6*1. 

Gadel, et al. (2015) (9) 
Wang, et al. (2022) (10) 

Weak 
 

In vitro Microsomes expressing CYP2B6*17 had decreased 
methadone metabolism compared to microsomes expressing 
CYP2B6*1 and similar metabolism to CYP2B6*5. 

Wang, et al. (2022) (10) Moderate 

In vitro Microsomes expressing CYP2B6*19 and *26 had decreased 
methadone metabolism compared to microsomes expressing 
CYP2B6*1 and CYP2B6*5 and *17. 

Wang, et al. (2022) (10) Weak 

Plasma Concentrations 
Clinical  CYP2B6 decreased function alleles were associated with 

higher dose-adjusted plasma R-methadone concentrations. 
Crettol, et al. (2005) (11) 
Lotsch, et al. (2006) (12) 
Bogen, et al. (2013) (13) 
Lee, et al. (2013) (14) 
Victorri-Vigneau, et al. (2019) 
Talal, et al. (2020) (15) 

Weak 

Clinical  CYP2B6 poor metabolizers had higher plasma R-methadone 
concentrations than CYP2B6 normal metabolizers. 
 

Crettol, et al. (2006) (16) 
Eap, et al. (2007) (17) 
Badhan, et al. (2021) (18) 

Weak 
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Clinical  CYP2B6 decreased function alleles were associated with 
higher dose-adjusted plasma S-methadone concentrations. 
 
 
 
 

Crettol, et al. (2005) (11) 
Wang, et al. (2011) (19) 
Dobrinas, et al. (2013) (20) 
Lee, et al. (2013) (14) 
Victorri-Vigneau, et al. (2019) (21) 
Talal, et al. (2020) (15) 

High  
 
 
 
 
 

Clinical  CYP2B6 poor metabolizers had higher plasma S-methadone 
concentrations than CYP2B6 normal and intermediate 
metabolizers. 

Crettol, et al. (2006) (16) 
Eap, et al. (2007) (17) 
Badhan, et al. (2021) (18) 
Chalabianloo, et al. (2023) (22) 

Moderate  

Clinical  CYP2B6 intermediate metabolizers had higher dose-
normalized plasma S-methadone concentrations than 
CYP2B6 normal metabolizers. 

Bogen, et al. (2013) (13) Weak 

Clinical  The noncoding CYP2B6 SNVs rs10500282, rs10403955, and 
rs1038376 were associated with higher dose-normalized 
plasma S-methadone concentrations. 

Wang, et al. (2011) (19) Moderate  

Clinical  The noncoding CYP2B6 SNVs rs2279345 and rs707265 were 
associated with lower dose-normalized plasma S-methadone 
concentrations. 

Wang, et al. (2011) (19) Moderate  

Clinical  CYP2B6*11 was associated with increased plasma S-
methadone concentrations. 

Dobrinas, et al. (2013) (20) Weak 

Clinical  CYP2B6*5 was associated with decreased plasma S-
methadone concentrations. 

Dobrinas, et al. (2013) (20) 
Ahmad, et al. (2017) (23) 

Weak 

Clinical  A significant interaction between PXR alleles and CYP2B6 
alleles increased plasma S-methadone concentrations, 
decreased S-methadone metabolism, and decreased S-
methadone clearance. 

Tsai, et al. (2013) (24) Moderate 

Clinical  Haplotypes of CYP2B6 were associated with increased 
plasma S-methadone concentrations. 

Yang, et al. (2016) (25) Moderate 

Clinical  CYP2B6 poor metabolizers had increased dose-normalized 
racemic plasma methadone concentrations compared to 
CYP2B6 normal metabolizers. 

Eap, et al. (2007) (17) 
Kringen, et al. (2017) (26) 
 

Moderate  
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Clinical  CYP2B6 intermediate metabolizers had increased dose-
normalized plasma racemic methadone concentrations 
compared to CYP2B6 normal metabolizers.   

Bogen, et al. (2013) (13) 
Kringen, et al. (2017) (26) 

Weak 

Clinical  Patients with methadone fatalities homozygous for 
CYP2B6*5 had higher post-mortem plasma methadone 
concentrations than patients heterozygous or homozygous for 
the reference allele. 

Ahmad, et al. (2017) (23) Weak 

Clinical  Patients with methadone fatalities heterozygous for 
CYP2B6*2 had decreased methadone/EDDP ratio post-
mortem than patients homozygous for the reference allele. 

Ahmad, et al. (2017) (23) Weak 

Clinical  Children who are CYP2B6 poor metabolizers are predicted to 
have higher plasma methadone concentrations compared to 
children with non-CYP2B6*6/*6 genotypes in physiological 
based pharmacokinetic modeling. 

Gerhart, et al. (2022) (27) Weak 

Clearance/AUC 
Clinical  CYP2B6 decreased function alleles were associated with 

decreased R-methadone clearance. 
 

Lotsch, et al. (2006) (12) 
Wang, et al. (2011) (19) 
Bart, et al. (2014) (28) 
Csajka, et al. (2016) (29) 
Aruldhas, et al. (2021) (30) 
Wang, et al. (2022) (10) 

Weak 

Clinical  The noncoding CYP2B6 SNV rs2279344 was associated with 
decreased S-methadone clearance but not R-methadone 
clearance. 

Csajka, et al. (2016) (29) Weak 

Clinical  CYP2B6 poor metabolizers had decreased R-methadone oral 
clearance compared to CYP2B6 normal metabolizers, but 
there was no difference for IV dosing. 

Kharasch, et al. (2015) (31) Weak 

Clinical  The noncoding CYP2B6 SNVs rs10403955 and rs2279345 
were associated with decreased R-methadone clearance. 

Wang, et al. (2011) (19) Weak 

Clinical  CYP2B6 decreased function alleles were associated with 
decreased S-methadone clearance.  
 
 

Wang, et al. (2011) (19) 
Bart, et al. (2014) (28) 
Csajka, et al. (2016) (29) 
Aruldhas, et al. (2021) (30) 

Moderate  
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 Wang, et al. (2022) (10) 
Clinical  CYP2B6 poor metabolizers had decreased S-methadone 

clearance compared to CYP2B6 normal metabolizers. 
Kharasch, et al. (2015) (31) Moderate  

Clinical  CYP2B6 intermediate metabolizers had decreased S-
methadone clearance compared to CYP2B6 normal 
metabolizers. 

Kharasch, et al. (2015) (31) Weak 

Clinical  The noncoding CYP2B6 SNV rs11882424 was associated 
with increased S-methadone fractional clearance in pediatric 
patients receiving intraoperative methadone. 

Aruldhas, et al. (2021) (30) Weak 

Clinical  The noncoding CYP2B6 SNVs rs10403955 and rs1038376 
were associated with decreased S-methadone clearance. 

Wang, et al. (2011) (19) Weak 

Clinical  Carriers of CYP2B6*4 had increased R- and S-methadone 
oral clearance. 

Kharasch, et al. (2015) (31) 
Bart, et al. (2021) (32) 

Weak 

Clinical  CYP2B6*5 and *11 were not associated with altered S-
methadone clearance. 

Csajka, et al. (2016) (29) Weak 

Clinical  CYP2B6*1/*18 was associated with the lowest methadone 
clearance in adolescent patients undergoing spine surgery. 

Wang, et al. (2022) (10) Weak 

Metabolism 
Clinical CYP2B6 decreased function alleles were associated with 

decreased R-methadone metabolism. 
Talal, et al. (2020) (15) 
Wang, et al. (2022) (10) 

Weak 

Clinical  CYP2B6 poor metabolizers had decreased R-methadone 
metabolism compared to CYP2B6 normal and rapid 
metabolizers.  

Kharasch, et al. (2015) (31) 
Packiasabapathy, et al. (2021) (33) 

Moderate  

Clinical  CYP2B6 intermediate metabolizers had decreased R and S-
methadone metabolism compared to CYP2B6 normal 
metabolizers. 

Kharasch, et al. (2015) (31) Weak 

Clinical  The noncoding CYP2B6 SNV rs8100458 was associated with 
R-and S-EDDP levels. 

Wang, et al. (2011) (19) Weak 

Clinical  CYP2B6 decreased function alleles were associated with 
decreased S-methadone metabolism. 

Talal, et al. (2020) (15) 
Wang, et al. (2022) (10) 

Moderate  
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Clinical  CYP2B6 poor metabolizers had decreased S-methadone 
metabolism compared to CYP2B6 normal and rapid 
metabolizers.  

Kharasch, et al. (2015) (31) 
Packiasabapathy, et al. (2021) (33) 

Moderate  

Clinical  CYP2B6 intermediate metabolizers had decreased S-
methadone metabolism compared to CYP2B6 normal 
metabolizers. 

Kharasch, et al. (2015) (31) Weak 

Clinical  CYP2B6*9 was not associated with altered racemic 
methadone metabolism. 

Sutlovic, et al. (2020) (34) Weak 

Clinical  The noncoding CYP2B6 SNV rs10500282 was associated 
with decreased racemic methadone metabolism. 

Packiasabapathy, et al. (2021) (33) Weak 

Clinical  The noncoding CYP2B6 SNV rs1038376 was associated with 
decreased racemic methadone metabolism. 

Packiasabapathy, et al. (2021) (33) Weak 

Methadone Dose 
Clinical CYP2B6 intermediate metabolizers required lower doses of 

methadone for opioid use disorder than CYP2B6 normal 
metabolizers. 

Hung, et al. (2011) (35) Weak 

Clinical CYP2B6 poor metabolizers required lower doses of 
methadone for opioid use disorder than CYP2B6 normal 
metabolizers. 

Hung, et al. (2011) (35)  
Levran, et al. (2013) (36) 

Moderate  

Clinical CYP2B6 decreased or no function alleles were associated with 
lower doses of methadone for opioid use disorder.  

Crettol, et al. (2005) (11) 
Eap, et al. (2007) (17) 
Fonseca, et al. (2011) (37) 
Lee, et al. (2013)(14) 
Mouly, et al. (2015) (38) 
Zahari, et al. (2016) (39) 
Crist, et al. (2018) (40) 
Victorri-Vigneau, et al. (2019) (21) 
Chawar, et al. (2021) (41) 
Chen, et al. (2022) (42) 

Weak 

Clinical CYP2B6*4 was not associated with methadone dose for 
opioid use disorder. 

Chen, et al. (2022) (42) Weak 
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Clinical CYP2B6 poor metabolizers required lower doses of 
methadone for opioid use disorder than CYP2B6 intermediate 
or normal metabolizers. 

Levran, et al. (2013) (36) Weak 

Clinical The noncoding CYP2B6 SNV rs16974799 was associated 
with lower maximum methadone dose for opioid use disorder.  

Chiang, et al. (2017) (43) 
Chang, et al. (2020) (44) 

Weak 

Clinical The noncoding CYP2B6 SNV rs3760657 was not associated 
with methadone dose for opioid use disorder. 

Chiang, et al. (2017) (43) Weak 

Clinical Methadone dose for opioid use disorder was associated with a 
three gene matrix: CYP2C19 x CYP2B6 x CYP3A4. 

Wang, et al. (2013) (45) 
Tsai, et al. (2014) (46) 

Weak 

Clinical Children who are CYP2B6 poor metabolizers are predicted to 
need lower doses of methadone to achieve similar plasma 
concentrations compared to children with non-CYP2B6*6/*6 
genotypes based on physiological-based pharmacokinetic 
modeling. 

Gerhart, et al. (2022) (27) Weak  

Clinical Outcomes 
Clinical Carriers of either noncoding CYP2B6 SNV rs10500282 or 

rs11882424 receiving perioperative methadone had increased 
pain scores compared to patients who were not carriers. 

Packiasabapathy, et al. (2021) (33) Weak 

Clinical Patients homozygous for the noncoding CYP2B6 SNV 
rs4803419 reported lower pain scores while receiving 
perioperative methadone compared to patients with one or no 
copies of rs4803419. 

Packiasabapathy, et al. (2021) (33) Weak 

Clinical Patients homozygous for the noncoding CYP2B6 SNV 
rs1038376 reported higher incidences of postoperative 
nausea/vomiting while receiving perioperative methadone 
compared to patients with at least one reference allele. 

Packiasabapathy, et al. (2021) (33) Weak 

Clinical CYP2B6 decreased function alleles and the noncoding 
CYP2B6 SNV rs8192719 were associated with methadone 
fatalities. 

Bunten, et al. (2010) (47) 
Bunten, et al. (2011) (48) 
Bunten, et al. (2011) (49) 
Ahmad, et al. (2017) (23) 

Weak 

Clinical CYP2B6 decreased or no function alleles were associated with 
therapeutic methadone response for opioid use disorder. 

Crettol, et al. (2005) (11) 
Fonseca, et al. (2011) (37) 
Hung, et al. (2011) (35) 

Weak 
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Lee, et al. (2013) (14) 
Mouly, et al. (2015) (38) 
Crist, et al. (2018) (40) 
Victorri-Vigneau, et al. (2019) (21) 
Chawar, et al. (2021) (41) 

Clinical Infants with CYP2B6 normal function alleles were more 
likely to require treatment for neonatal abstinence syndrome 
than infants with CYP2B6 decreased function alleles. 

Mactier, et al. (2017) (50) Weak 

Clinical CYP2B6 decreased function alleles may be associated with 
infant death from a breastfeeding mother on methadone. 

Madadi, et al. (2016) (51) Weak 

Clinical CYP2B6 decreased function alleles were associated with 
lower pain threshold and lower pain tolerance for opioid use 
disorder. 

Zahari, et al. (2016) (39) Weak 

Clinical Patients homozygous for CYP2B6*6 receiving methadone for 
opioid use disorder had a statistically higher (18 ms) median 
QTc interval than patients with non-CYP2B6 *6/*6 
genotypes. 

Eap, et al. (2007) (17)  Moderate  

Clinical CYP2B6 poor metabolizers may be predicted to be higher risk 
of QTc prolongation than CYP2B6 normal metabolizers 
receiving high-dose methadone for opioid use disorder. 

Csajka, et al. (2016) (29) Weak 

aRating scheme described in the Supplemental Material 
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FIGURE S1. THE CHALLENGES WITH CYP2B6 DIPLOTYPE CALLING 
CYP2B6 genotyping often includes few variants besides c.516G>T, as the latter is viewed to be the single most important variant to 
predict CYP2B6 activity. Due to limited testing and uncertainty regarding the phase of variants (e.g., whether variants or in cis or 
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trans), alleles with c.516G>T are often defaulted to, and reported as, CYP2B6*6. This defaulting strategy is further driven by 
CYP2B6*6 being the most common allele across populations with c.516G>T. The figure illustrates the impact of defaulting on 
phenotype assignments on selected diplotypes (specified on the right-hand side) and their respective default assignments if only 
c.516G>T is tested (detailed on the left-hand side).  

Although defaulting practices may incorrectly assign diplotypes (i.e., misassign an allele as CYP2B6*6), they often accurately predict 
intermediate (IM) metabolism. An example of an exception is CYP2B6*1/*4 (RM) which would be reported as CYP2B6*1/*1 (NM) if 
only c.516G>T is tested. It is also noted that two haplotypes (i.e., CYP2B6*13 and *38, not shown in figure) with c.516G>T have 
additional variant(s) which render these alleles nonfunctional rather than decreased function; not testing these variants may also lead 
to inaccurate phenotype predictions.  
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