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GUIDELINE UPDATES 

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for NAT2 

and hydralazine therapy is published in full on the CPIC website (1). Relevant information will 

be reviewed periodically, and updated guidelines published online (1). 
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LITERATURE REVIEW 

The PubMed® database (1966 to January 2024) was searched for the following 

keywords: hydralazine AND (NAT2 OR n-acetyltransferase OR acetylator). The search was 

limited to studies conducted in humans and written in the English language, and review articles 

were excluded. Using these search terms, 126 publications were identified for review. Study 

inclusion criteria included publications that incorporated analyses for the association between 

NAT2 genotype or phenotype and hydralazine pharmacokinetic parameters or hydralazine-related 

clinical outcomes in patients. Following the application of these criteria, 50 publications were 

reviewed and included in the evidence tables (Table S1). Two additional studies identified in the 

reference list of a recent review article (2) but not found in the PubMed search described above 

were also included. This review article also included an assessment of NAT2 genotype to 

phenotype concordance using 29 additional studies, which were included as part of the original 

evidence table. 

 

GENETIC TEST INTERPRETATION 

Haplotypes, or star (*) alleles, are determined by a specific single nucleotide variation 

(SNV) or a combination of SNVs that are interrogated in the genotyping analysis. The genotypes 

that constitute the haplotypes, or star (*) alleles for NAT2, and the rsIDs for each of the specific 

nucleotide alterations that define the alleles, are as defined on the PharmVar NAT gene page 

(https://www.pharmvar.org/gene/NAT2) from which the NAT2 Allele Definition Table online  

is sourced (1, 3). The genotype results are generally reported as a diplotype, which includes one 

maternal and one paternal allele (e.g., NAT2*4/*5). The clinical functional assignments of NAT2 

alleles are summarized in the NAT2 Allele Functionality Table online (1, 3).  

https://www.pharmvar.org/gene/NAT2
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Star allele-based NAT2 nomenclature was transitioned to PharmVar in March 2024 

during which numerous changes have been made. We refer the reader to the PharmVar 

GeneFocus on NAT2 for details (in preparation), as well as documentation available on the 

PharmVar NAT2 gene page  (www.pharmvar.org/gene/NAT2) including the Read Me and 

Change Log documents and the Look-Up table which crosswalks between the ‘old’ and the 

‘new’ PharmVar nomenclature.  

 

AVAILABLE GENETIC TEST OPTIONS  

Commercially available genetic testing options change over time. The Genetic Testing 

Registry provides a central location for voluntary submission of genetic test information by 

providers and is available at http://www.ncbi.nlm.nih.gov/gtr. Desirable characteristics of 

pharmacogenomic tests, including naming of alleles and test report contents, have been 

extensively reviewed by an international group, including CPIC members (4). CPIC recommends 

that clinical laboratories adhere to these test reporting standards. CPIC gene-specific tables 

adhere to these allele nomenclature standards. Moreover, these tables (e.g., NAT2 Allele 

Definition Table, NAT2 Allele Functionality Table) may be used to assemble lists of known 

functional and actionable genetic variants (1, 3).  

 

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE 

The evidence summarized in Table S1 is graded on a scale of high, moderate, and weak based 

upon the level of evidence:  

• High: Evidence includes consistent results from well-designed, well-conducted studies. 

High confidence that the available evidence reflects the true magnitude and direction of 

http://www.pharmvar.org/gene/NAT2
http://www.ncbi.nlm.nih.gov/gtr
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the net effect and further research is very unlikely to change the magnitude or direction of 

this net effect. 

• Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is 

limited by the number, quality, or consistency of the individual studies; generalizability 

to routine practice; or indirect nature of the evidence. Further research is unlikely to alter 

the direction of the net effect, however it might alter the magnitude of the net effect. 

• Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, gaps in 

the chain of evidence, or lack of information. Further research may change the magnitude 

and/or direction of the net effect. 

 

STRENGTH OF RECOMMENDATIONS 

CPIC’s therapeutic recommendations are based on weighing the evidence from a 

combination of preclinical functional and clinical data, as well as on some existing disease-

specific consensus guidelines. Some of the factors that are taken into account in evaluating the 

evidence supporting therapeutic recommendations may include in vivo pharmacokinetic and 

pharmacodynamic data, in vitro enzyme activity of tissues expressing wild-type/reference or 

variant-containing enzyme, in vitro enzyme activity from tissues isolated from individuals of 

known genotypes, and in vivo pre-clinical and clinical pharmacokinetic and pharmacodynamic 

studies.  

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for 

recommendations adopted from the rating scale for evidence-based guidelines on the use of 

antiretroviral agents (5): 
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• Strong recommendation for the statement: The evidence is high quality and the desirable 

effects clearly outweigh the undesirable effects. 

• Moderate recommendation for the statement: There is a close or uncertain balance as to 

whether the evidence is high quality and the desirable effects clearly outweigh the 

undesirable effects. 

• Optional recommendation for the statement: The desirable effects are closely balanced 

with undesirable effects, or the evidence is weak or based on extrapolations. There is 

room for differences in opinion as to the need for the recommended course of action. 

• No recommendation: There is insufficient evidence, confidence, or agreement to 

provide a recommendation to guide clinical practice at this time. 

 

RESOURCES TO INCORPORATE PHARMACOGENOMICS INTO AN ELECTRONIC 

HEALTH RECORD WITH CLINICAL DECISION SUPPORT 

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) 

can help guide clinical pharmacogenomics at the point of care (6-8). See 

https://cpicpgx.org/guidelines/cpic-guideline-for-hydralazine-and-nat2/ for resources to support 

the adoption of CPIC guidelines within an EHR (1). Based on the capabilities of various EHRs 

and local preferences, we recognize that approaches may vary across organizations. Our intent is 

to synthesize foundational knowledge that provides a common starting point for incorporating 

NAT2 genotype results in an EHR to guide hydralazine therapy.    

Effective incorporation of pharmacogenomic information into an EHR to optimize drug 

therapy should have some key attributes.  Pharmacogenomic test results, an interpreted 

phenotype, and a concise interpretation or summary of the result must be documented in the 

EHR. To incorporate a phenotype in the EHR in a standardized manner, genotype test results 

https://cpicpgx.org/guidelines/cpic-guideline-for-hydralazine-and-nat2/
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provided by the laboratory must be consistently translated into an interpreted drug metabolism 

phenotype (Table 1, main manuscript; NAT2 Diplotype to Phenotype Table (1, 3)). Because 

clinicians must be able to easily find the information, the interpreted phenotype may be 

documented as a problem list entry or in a patient’s summary section; these phenotypes are best 

stored in the EHR at the “person level” rather than at the date-centric “encounter level”.  

Additionally, results should be entered as standardized and discrete terms to facilitate using them 

to provide point-of-care CDS (see Hydralazine Pre- and Post-Test Alerts and Flow Chart for 

example CDS alerts; https://cpicpgx.org/guidelines/cpic-guideline-for-hydralazine-and-nat2/) 

(1).  Point-of-care CDS should be designed to effectively notify clinicians of prescribing 

implications at any time after the test result is entered into the EHR. For this guideline, each 

NAT2 phenotype (rapid metabolizer [RM], intermediate metabolizer [IM], poor metabolizer 

[PM]) is considered an actionable (“priority/high risk”) result, depending on the hydralazine dose 

prescribed. For RMs and IMs, a post-test alert is recommended when a total daily dose of 

hydralazine ≤ 50 mg is prescribed. For PMs, a post-test alert is recommended when a total daily 

dose of hydralazine ≥200 mg is prescribed. CPIC’s informatics resources are meant to be used as 

a starting point, and each institution is encouraged to customize their approach (e.g., what type of 

alerts to deploy, what wording to use) based on their unique needs. 

Because pharmacogenomic test results have lifetime implications and clinical 

significance, results should be placed into a section of the EHR that is accessible independent of 

the test result date to allow clinicians to quickly find the result at any time after it is initially 

placed in the EHR.  To facilitate this process, CPIC is providing gene-specific information 

figures and tables that include complete diplotype to phenotype translation tables, diagram(s) 

that illustrate how NAT2 pharmacogenomic test results could be entered into an EHR, example 

https://cpicpgx.org/guidelines/cpic-guideline-for-hydralazine-and-nat2/
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EHR consultation/genetic test interpretation language and widely used nomenclature systems for 

relevant drugs (see https://cpicpgx.org/guidelines/cpic-guideline-for-hydralazine-and-nat2/) (1).  

https://cpicpgx.org/guidelines/cpic-guideline-for-hydralazine-and-nat2/
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TABLE S1. EVIDENCE LINKING NAT2 TO HYDRALAZINE PHENOTYPE  

 

Type of Experimental 
Model (in vitro, in vivo, 

preclinical, or clinical) 

Major Findings References Level of Evidencea 

In vitro In human hepatocytes, MTP 
production from hydralazine 
metabolism was higher in NAT2 
rapid versus intermediate versus 
poor metabolizers at different 
hydralazine concentrations. 

Allen, et al. (2017) (9) 
 

High  

Clinical The overall concordance of NAT2 
genotype to NAT2 enzymatic 
activity phenotype is greater than 
90%.   

Deguchi, et al. (1990) (10) 
Hickman, et al. (1991) (11) 
Graf, et al. (1992) (12) 
Bell, et al. (1993) (13) 
Cascorbi, et al. (1995) (14) 
Le Marchand, et al. (1996) (15) 
Kaufmann, et al. (1996) (16) 
O'Neil, et al. (1997) (17) 
Parkin, et al. (1997) (18) 
Smith, et al. (1997) (19) 
Woolhouse, et al. (1997) (20) 
Cascorbi, et al. (1999) (21) 
Gross, et al. (1999) (22) 
Wolkenstein, et al. (2000) (23) 
Zhao, et al. (2000) (24) 
Bolt, et al. (2005) (25) 
Skretkowicz, et al. (2005) (26) 
Goldenkova-Pavlova, et al. (2006) (27) 
Rychlik-Sych, et al. (2006) (28) 
Straka, et al. (2006) (29) 
Rihs, et al. (2007) (30) 
Díaz-Molina, et al. (2008) (31) 

High  
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Kuhn, et al. (2010) (32) 
Hein, et al. (2012) (33) 
Rana, et al. (2012) (34) 
Ruiz, et al. (2012) (35) 
Al-Ahmad, et al. (2017) (36) 
Aklilu, et al. (2018) (37) 
Birch, et al. (2018) (38) 
Akhter, et al. (2019) (39) 

Clinical NAT2 poor metabolizers (slow 
acetylators) have higher 
hydralazine exposure compared 
to NAT2 rapid and intermediate 
metabolizers (rapid acetylators).  

Zacest, et al. (1972) (40) 
Jounela, et al. (1975) (41) 
Talseth, et al. (1977) (42) 
Timbrell, et al. (1979) (43) 
Hawksworth, et al. (1980) (44) 
Reece, et al. (1980) (45) 
Shen, et al. (1980) (46) 
Shepherd, et al. (1980) (47) 
Timbrell, et al. (1980) (48) 
Facchini, et al. (1981) (49) 
Ludden, et al. (1981) (50) 
Timbrell, et al. (1981) (51) 
Ludden, et al. (1983) (52) 
Timbrell, et al. (1984) (53) 
Blair, et al. (1985) (54) 
Dubois, et al. (1987) (55) 
Rashid, et al. (1992) (56) 
Gonzalez-Fierro, et al. (2011) (57) 
Han, et al. (2019) (58) 

High 

Clinical Hydralazine dosed at 182 mg in 
NAT2 rapid and intermediate 
metabolizers (rapid acetylators) 
and 83 mg in NAT2 poor 
metabolizers (slow acetylators) 
resulted in similar hydralazine 
exposure. 

Arce, et al. (2006) (59) 
Candelaria, et al. (2007) (60) 
Coronel, et al. (2011) (61) 
Gonzalez-Fierro, et al. (2011) (57) 
Garcés-Eisele, et al. (2014) (62) 
 

High 
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Clinical Hydralazine is a more effective 
antihypertensive in NAT2 poor 
metabolizers (slow acetylators) 
compared to NAT2 rapid and 
intermediate metabolizers (rapid 
acetylators) at the same dose. 

Hunyor, et al. (1975) (63) 
Jounela, et al. (1975) (41) 
Kalowski, et al. (1979) (64) 
Vidrio, et al. (1980) (65) 
Wulff, et al. (1980) (66) 
Shepherd, et al. (1981) (67) 
Shepherd, et al. (1981) (68) 
Silas, et al. (1982) (69) 
Vandenburg, et al. (1982) (70) 
Danielson, et al. (1983) (71) 
Koopmans, et al. (1984) (72) 
Ramsay, et al. (1984) (73) 
Rowell, et al. (1990) (74) 
Spinasse, et al. (2014) (75) 

Moderate 

Clinical A higher dose of hydralazine is 
required in NAT2 rapid and 
intermediate metabolizers (rapid 
acetylators) to achieve 
antihypertensive efficacy 
equivalent to NAT2 poor 
metabolizers (slow acetylators). 

Zacest, et al. (1972) (40) 
Hunyor, et al. (1975) (63) 
Jounela, et al. (1975) (41) 
Litwin, et al (1981) (76) 
Silas, et al. (1982) (69) 
Vandenburg, et al. (1982) (70) 
Koopmans, et al. (1984) (72) 
Ramsay, et al. (1984) (73) 
Graves, et al. (1990) (77) 

Moderate 

Clinical Hydralazine is a more effective 
antihypertensive in NAT2 poor 
metabolizers (slow acetylators) 
compared to NAT2 rapid and 
intermediate metabolizers (rapid 
acetylators). 

Zacest, et al. (1972) (40)  
Hunyor, et al. (1975) (63) 
Jounela, et al. (1975) (41) 
Kalowski, et al. (1979) (64) 
Wulff, et al. (1980) (66) 
Litwin, et al. (1981) (76) 
Shepherd, et al. (1981) (67) 
Shepherd, et al. (1981) (68) 
Silas, et al. (1982) (69) 
Vandenburg, et al. (1982) (70) 
Danielson, et al. (1983) (71) 
Koopmans, et al. (1984) (72) 

Moderate 
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Ramsay, et al. (1984) (73) 
Graves, et al. (1990) (77) 
Rowell, et al. (1990) (74) 
Spinasse, et al. (2014) (75) 

Clinical NAT2 poor metabolizers (slow 
acetylators) have a higher risk of 
non-lupus adverse effects with 
hydralazine compared to NAT2 
rapid and intermediate 
metabolizers (rapid acetylators).  

Kalowski, et al. (1979) (64) 
Wulff, et al. (1980) (66) 
Tsujimoto, et al. (1981) (78) 
Vandenburg, et al. (1982) (70) 
Dahlqvist, et al. (1983) (79) 
Danielson, et al. (1983) (71) 
Ramsay, et al. (1984) (73) 
Björck, et al. (1985) (80) 
Gonzalez-Fierro, et al. (2011) (57) 
Spinasse, et al. (2014) (75) 

Moderate 

Clinical NAT2 poor metabolizers (slow 
acetylators) have a higher risk of 
developing hydralazine-induced 
systemic lupus erythematosus 
compared to NAT2 rapid and 
intermediate metabolizers (rapid  
acetylators). 

Hunyor, et al. (1975) (63) 
Strandberg, et al. (1976) (81) 
Batchelor, et al. (1980) (82) 
Litwin, et al. (1981) (76) 
Cameron, et al. (1984) (83) 
Ihle, et al. (1984) (84) 
Ramsay, et al. (1984) (73) 
Timbrell, et al. (1984) (53) 
Asherson, et al. (1986) (85) 
Russell, et al. (1986) (86) 
Pålsson, et al. (1989) (87) 
Schattner, et al. (1994) (88) 
Spinasse, et al. (2014) (75) 
Holman, et al. (2017) (89) 

Moderate 

Clinical NAT2 poor metabolizers (slow 
acetylators) have a higher risk of 
adverse effects with hydralazine 
compared to NAT2 rapid and 
intermediate metabolizers (rapid 
acetylators).  

Hunyor, et al. (1975) (63) 
Strandberg, et al. (1976) (81) 
Kalowski, et al. (1979) (64) 
Batchelor, et al. (1980) (82) 
Wulff, et al. (1980) (66) 
Litwin, et al. (1981) (76) 
Tsujimoto, et al. (1981) (78) 

Moderate 
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Vandenburg, et al. (1982) (70) 
Dahlqvist, et al. (1983) (79) 
Danielson, et al. (1983) (71) 
Cameron, et al. (1984) (83) 
Ihle, et al. (1984) (84) 
Ramsay, et al. (1984) (73) 
Timbrell, et al. (1984) (53) 
Björck, et al. (1985) (80) 
Asherson, et al. (1986) (85) 
Russell, et al. (1987) (86) 
Pålsson, et al. (1989) (87) 
Schattner, et al. (1994) (88) 
Gonzalez-Fierro, et al. (2011) (57) 
Spinasse, et al. (2014) (75) 
Holman, et al. (2017) (89) 

aRating scheme described in the Supplemental Material 

 

 

 

 

 

 

 



14 

 

 

 

FIGURE S1. HEPATIC METABOLISM OF HYDRALAZINE  

For a detailed and updated description, please see: https://www.pharmgkb.org/pathway/PA166271241. Image is available under a 
Creative Commons BY-SA 4.0 license (90).

https://www.pharmgkb.org/pathway/PA166271241
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