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GUIDELINE UPDATES 

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and 

efavirenz therapy is published in full on the CPIC website (https://cpicpgx.org/guidelines/cpic-

guideline-for-efavirenz-based-on-cyp2b6-genotype/) (1). Relevant information will be reviewed 

periodically and updated guidelines published online. 

 

LITERATURE REVIEW 

The PubMed® database (1966 to August 2017) was searched for the following keywords: 

(CYP2B6 OR cytochrome P450 2B6) AND efavirenz. Using these search terms, 282 

publications were identified. Study inclusion criteria included publications that incorporated 

analyses for the association between CYP2B6 genotypes and efavirenz pharmacokinetic 

parameters or efavirenz-related clinical outcomes (e.g., CNS toxicity, viral load, CD4+ T 

lymphocyte count, treatment discontinuation). Non-English manuscripts were excluded. 

Following the application of these inclusion and exclusion criteria, 150 publications were 

reviewed and included in the evidence table (Table S1).  

 

The CYP2B6 Frequency Table (1) was made by searching the PubMed® database (1966 to 

May 2018) for the following keywords: (CYP2B6 OR cytochrome P450 2B6) AND (allele OR 

haplotype OR frequency OR population OR ethnic OR race OR racial OR ethnicity) with filter 

limits to retrieve “English” literature. Studies were considered for inclusion in the CYP2B6 

Frequency Table if (1) the ancestry of the population was clearly indicated; (2) either allele 
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frequencies or genotype frequencies were reported; and (3) the method by which variants were 

genotyped was indicated. Given the limited information on CYP2B6 allele frequency from the 

PubMed search, allele frequencies reported in the gnomAD browser 

(http://gnomad.broadinstitute.org/ - exomes and genomes) and ensembl (grch37.ensembl.org - 

exomes or genomes) were also included for several population groups.  

  

GENETIC TEST INTERPRETATION 

The haplotype, or star (*) allele name, is determined by a specific SNP or a combination of SNPs 

that are interrogated in the genotyping analysis. In addition, structural variants such as the 

CYP2B6 breakpoint to a 529-bp intron 4 region with high homology to CYP2B7P1, resulting in 

the CYP2B6*29 partial deletion allele (2) and CYP2B6/2B7P1 duplicated fusion allele 

(CYP2B6*30) (3) have been identified. The frequency of the CYP2B6*29 and CYP2B6*30 

alleles is very low in the population tested (~0.005% in African Americans and Asians, 

respectively) and are identified in other population studies as evidenced by entries in the Data 

Base of Genomic Variants (DGV) for this region. Although little is generally known about 

structural variants of the CYP2B6 gene, these findings highlight that the CYP2B6 gene can 

undergo rearrangements.  

 

The genotypes that constitute the haplotype, or star (*) alleles for CYP2B6, and the rs# for each 

of the specific genomic nucleotide alterations that define the alleles, are described in the 

CYP2B6 Allele Definition Table online. The genotype results are generally reported as a 

diplotype, which includes one maternal and one paternal star allele (e.g., *1/*6). The CYP2B6 
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function associated with each of the common star alleles is summarized in the CYP2B6 Allele 

Functionality Table online.  

 

AVAILABLE GENETIC TEST OPTIONS 

Commercially available genetic testing options change over time. The Genetic Testing Registry 

provides a central location for voluntary submission of genetic test information by providers and 

is available at: http://www.ncbi.nlm.nih.gov/gtr. Desirable characteristics of pharmacogenetic 

tests, including naming of alleles and test report contents, have been extensively reviewed by an 

international group, including CPIC members (4). CPIC recommends that clinical laboratories 

adhere to these test reporting standards. CPIC gene-specific tables adhere to these allele 

nomenclature standards. Moreover, these tables (CYP2B6 Allele Definition Table, CYP2B6 

Allele Functionality Table, and CYP2B6 Allele Frequency Table) may be used to assemble 

lists of known functional and actionable pharmacogenetic variants and their population 

frequencies, which may inform decisions as to whether tests are adequately comprehensive in 

interrogations of alleles.  

 

Because the genomic structure of the CYP2B6 gene is complex, there are several factors that 

cause potential uncertainty in the genotyping results and phenotype predictions. 1) Since it is 

impractical to test for every variation in the CYP2B6 gene, patients with rare variants may be 

assigned a default genotype; this can happen when a patient’s one or two rare allele(s) are not 

included in the genotype test used. Several variants of the CYP2B6 gene with potential functional 

consequences are rare (MAF <1%) in most populations, and thus sequencing-based approaches 

are recommended if patients receiving efavirenz develop CNS toxicity. 2) In some cases, there 
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are gene units involved in duplication (CYP2B6*30) and partial deletion (CYP2B6*29). These 

two variants have potential functional impact and detecting structural variants like CYP2B6*29 

and *30 may have significant pharmacogenetic implications when accurately interpreting the 

metabolizer phenotype. For example, if just assessing copy number of exons 1 through 4, *30 

could be misclassified as CYP2B6*1x2, which predicts an ultrarapid metabolizer phenotype. 

Both the two TaqMan qPCR assays (one in exon 4 and a second located 12.6 kb downstream of 

the CYP2B6 gene) and a long-range PCR-based sequence strategy is needed to interrogate and 

correctly assign the breakpoint regions of the identified CYP2B6*29 deletion and CYP2B6*30 

duplication fusion alleles (3). If the specific gene units involved in duplication and deletion or 

other rearrangements are not specifically tested for, the phenotype prediction may be inaccurate. 

Currently, these variants are rare across different populations. This along with the difficulty of 

the genotyping assays of these variants to incorporate into currently existing CYP2B6 genotyping 

test platforms may limit the utility of genetic tests of structural variants. 3) Some SNPs exist on 

multiple alleles (e.g., c.516G>T is found in combination with other variants in 11 other CYP2B6 

alleles [*6, *7, *13, *19, *20, *26, *29, *34, *36, *37, *38]. If testing indicates heterozygosity 

for multiple SNPs, it may be difficult to accurately assign a specific genotype. For example, an 

individual heterozygous for the c.516G>T, c.785A>G, and c.1459C>T variants in the CYP2B6 

gene could be classified as CYP2B6*1/*7 or *5/*6 unless PCR-based haplotype determination or 

cloning methods is developed to distinguish between these two genotypes (5). 4) Allele 

frequencies may vary considerably among patients of different populations and ethnic 

backgrounds. For example, CYP2B6*18 and other rare variants are relatively common in black 

populations and have a considerably lower prevalence, or are even absent, in other ethnic groups 

such as Caucasians of European ancestry. Thus, the alleles that should be tested for a given 
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population may vary considerably. 5) As described above, both CYP2B6*29 (partial deletion) 

and CYP2B6*30 (duplication representing CYP2B7/CYP2B6 hybrid [crossover in intron 4] 

require complementary assays including sequencing to distinguish between the two variants. 6) 

The possibility that rare SNPs or pseudogenes may interfere with PCR amplification and/or 

detection on a particular platform or assay cannot be ruled out. For example, testing for 

c.785A>G is challenging using the commercially available TaqMan assay (6). This SNP is 

located in a region that is identical CYP2B7, a nonfunctional pseudogene. Small CYP2B6-

specific PCR amplicons bracketing c.785A>G cannot be reliably generated. Thus, the genotype 

assay is often performed in two steps where exon 5 is first amplified with primer sand then a pre-

amplified CYP2B6-specific long-range PCR amplicon is used as a template for a custom 

TaqMan genotyping assay.  

 

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE 

The evidence summarized in Table S1 is graded on a scale of high, moderate, and weak (7) 

based upon the level of evidence:  

 High: Evidence includes consistent results from well-designed, well-conducted studies. 

Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is 

limited by the number, quality or consistency of the individual studies, generalizability to 

routine practice, or the indirect nature of the evidence. 

Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, gaps in 

the chain of evidence, or lack of information.  
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STRENGTH OF RECOMMENDATIONS 

CPIC’s therapeutic recommendations are based on weighing the evidence from a combination of 

preclinical functional and clinical data, as well as on some existing disease-specific consensus 

guidelines. Some of the factors that are taken into account in evaluating the evidence supporting 

therapeutic recommendations include in vivo pharmacokinetic and pharmacodynamic data, in 

vitro enzyme activity of tissues expressing wild-type/reference or variant-containing CYP2B6, in 

vitro CYP2B6 enzyme activity from tissues isolated from individuals of known CYP2B6 

genotypes, and in vivo pre-clinical and clinical pharmacokinetic and pharmacodynamic studies.  

 

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for 

recommendations adopted from the rating scale for evidence-based guidelines on the use of 

antiretroviral agents (8):  

• Strong recommendation for the statement: The evidence is high quality and the desirable 

effects clearly outweigh the undesirable effects. 

• Moderate recommendation for the statement: There is a close or uncertain balance as to 

whether the evidence is high quality and the desirable effects clearly outweigh the 

undesirable effects. 

• Optional recommendation for the statement: The desirable effects are closely balanced 

with undesirable effects, or the evidence is weak or based on extrapolations. There is 

room for differences in opinion as to the need for the recommended course of action. 

• No recommendation: There is insufficient evidence, confidence, or agreement to 

provide a recommendation to guide clinical practice at this time. 
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RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC 

HEALTH RECORD WITH CLINICAL DECISION SUPPORT 

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) can 

help guide clinical pharmacogenetics at the point of care (9-14).  See 

https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/ for 

resources to support the adoption of CPIC guidelines within an EHR (15).  Based on the 

capabilities of various EHRs and local preferences, we recognize that approaches may vary 

across organizations. Our intent is to synthesize foundational knowledge that provides a common 

starting point for incorporating CYP2B6 genotype results in an EHR to guide efavirenz use.   

 

Effectively incorporating pharmacogenetic information into an EHR to optimize drug therapy 

should have some key attributes.  Pharmacogenetic results, an interpreted phenotype, and a 

concise interpretation or summary of the result must be documented in the EHR (16). To 

incorporate a phenotype in the EHR in a standardized manner, genotype test results provided by 

the laboratory must be consistently translated into an interpreted phenotype (Table 1, main 

manuscript; CYP2B6 Diplotype to Phenotype Table (1)).  Because clinicians must be able to 

easily find the information, the interpreted phenotype may be documented as a problem list entry 

or in a patient’s summary section; these phenotypes are best stored in the EHR at the “person 

level” rather than at the date-centric “encounter level”.  Additionally, results should be entered as 

standardized and discrete terms to facilitate using them to provide point-of-care CDS (see 

Efavirenz Pre- and Post-Test Alerts and Flow Chart for example CDS alerts; 
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https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/) (17, 18). 

The CDS alerts for CYP2B6/efavirenz apply for adult patients and for children > 40 kg.  

 

Because pharmacogenetic results have lifetime implications and clinical significance, results 

should be placed into a section of the EHR that is accessible independent of the test result date to 

allow clinicians to quickly find the result at any time after it is initially placed in the EHR.  To 

facilitate this process, CPIC is providing gene-specific information figures and tables that 

include full diplotype to phenotype tables, diagram(s) that illustrate how CYP2B6 

pharmacogenetic test results could be entered into an EHR, example EHR consultation/genetic 

test interpretation language and widely used nomenclature systems (see 

https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/) (19). 

Point-of-care CDS should be designed to effectively notify clinicians of prescribing implications 

at any time after the test result is entered into the EHR. CPIC is also providing gene-drug 

specific tables that provide guidance to achieve these objectives with diagrams that illustrate how 

point-of-care CDS should be entered into the EHR, example pre- and post-test alert language, 

and widely used nomenclature systems for relevant drugs (see 

https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/). 
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TABLE S1.  EVIDENCE LINKING CYP2B6 TO EFAVIRENZ PHENOTYPE 
 

Type of 
experimental 
model 

Major findings References  Level of 
evidencea 

In vitro CYP2B6 is the major metabolizing enzyme for efavirenz. Ward, et al. 2003 (20) 
Ogburn, et al. 2010 (21) 

High 

In vitro No association found between CYP2B6*4 (c.785 A>G) and catalytic activity 
of CYP2B6 or metabolism of efavirenz. 

Supports statement: 
Zhang, et al. 2011 (22) 
 
Does not support statement:  
Ariyoshi, et al. 2011 (23) 

Weak 

In vitro CYP2B6*5 (c.1459 C>T) is associated with increased catalytic activity of 
CYP2B6 and increased efavirenz metabolism. 

Supports statement: 
Zhang, et al. 2011 (22) 
 
Does not support statement:  
Desta, et al. 2007 (24) 

Weak 

In vitro CYP2B6*6 (c.516 G>T and c.785 A>G) is associated with decreased 
catalytic activity of CYP2B6 and decreased efavirenz metabolism. 

Zhang, et al. 2011 (22) 
Ariyoshi, et al. 2011 (23) 
Xu, et al. 2012 (25) 
Desta, et al. 2007 (24) 

High 

In vitro CYP2B6*7 (c.516 G>T, c.785 A>G, c.1459 C>T) is associated with 
increased catalytic activity of CYP2B6 and increased efavirenz metabolism. 

Zhang, et al. 2011 (22) 
 

Weak 

In vitro CYP2B6*8 (c.415 A>G) is associated with abolished catalytic activity of 
CYP2B6 and no efavirenz metabolism. 

Zhang, et al. 2011 (22) 
 

Weak 

In vitro CYP2B6*9 (c.516 G>T) is associated with decreased catalytic activity of 
CYP2B6 and decreased efavirenz metabolism. 

Zhang, et al. 2011 (22) 
 

Weak 

In vitro CYP2B6*13 (c.415 A>G, c.516 G>T, c.785 A>G) is associated with 
decreased catalytic activity of CYP2B6 and decreased efavirenz metabolism. 

Desta, et al. 2007 (24) Weak 

In vitro CYP2B6*14 (c.419 G>A) is associated with decreased catalytic activity of 
CYP2B6 and decreased efavirenz metabolism. 

Desta, et al. 2007 (24) Weak 
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In vitro CYP2B6*15 (c.1172 T>A) is associated with decreased catalytic activity of 
CYP2B6 and decreased efavirenz metabolism. 

Desta, et al. 2007 (24) Weak 

Clinical CYP2B6 c.516 G>T is associated with increased efavirenz plasma, 
cerebrospinal fluid, breast milk, and/or hair concentrations. 

Abdelhady, et al. 2016 (26) 
Rohrich, et al. 2016 (27) 
Abdelhady, et al. 2014 (28) 
Sanchez Martin, et al. 2013 (29) 
Swart, et al. 2013 (30) 
Sukasem, et al. 2013 (31) 
Jiang, et al. 2013 (32) 
Heil, et al. 2012 (33) 
Ngaimisi, et al. 2010 (34) 
Mukonzo, et al. 2009 (35) 
Kwara, et al. 2008 (36) 
Gatanaga, et al. 2007 (37) 
Rotger, et al. 2007 (38) 
Tsuchiya, et al. 2004 (39) 
Anagnostopoulos, et al. 2013 (40) 
Gallien, et al. 2017 (41) 
Sanchez-Martin, et al. 2016 (42) 
Sandkovsky, et al. 2017 (43) 
Orrell, et al. 2016 (44) 
Nightingale, et al. 2016 (45) 
Mukonzo, et al. 2016 (46) 
Bienczak, et al. 2016 (47) 
Pinillos, et al. 2016 (48) 
Swart, et al. 2016 (49) 
Cusato, et al. 2016 (50) 
Meng, et al. 2015 (51) 
Dickinson, et al. 2015 (52) 
Abdissa, et al. 2015 (53) 
Maganda, et al. 2016 (54) 
Dhoro, et al. 2015 (55) 
Olagunju, et al. 2015 (56) 
Habtewold, et al. 2015 (57) 
Olagunju, et al. 2015 (58) 

High 
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Sinxadi, et al. 2015 (59) 
Winston, et al. 2015 (60) 
Mukonzo, et al. 2014 (61) 
Olagunju, et al. 2014 (62) 
Lee, et al. 2014 (63) 
Ramachandran, et al. 2013 (64) 
Mukonzo, et al. 2014 (65) 
Bienvenu, et al. 2014 (66) 
Naftalin, et al. 2014 (67) 
Salem, et al. 2014 (68) 
Sarfo, et al. 2014 (69) 
Bertrand, et al. 2014 (70) 
Lee, et al. 2014 (71) 
Ngaimisi, et al. 2013 (72) 
Swart, et al. 2013 (30) 
Mukonzo, et al. 2013 (73) 
Sukasem, et al. 2013 (31) 
Manosuthi, et al. 2013 (74) 
Cortes, et al. 2013 (75) 
Holzinger, et al. 2012 (76) 
Gandhi, et al. 2012 (77) 
Mutwa, et al. 2012 (78) 
Sukasem, et al. 2012 (79) 
Heil, et al. 2012 (33) 
Viljoen, et al. 2012 (80) 
Maimbo, et al. 2012 (81) 
Sanchez, et al. 2011 (82) 
Habtewold, et al. 2011 (83) 
Ngaimisi, et al. 2011 (84) 
Strehlau, et al. 2011 (85) 
Kwara, et al. 2011 (86) 
Elens, et al. 2010 (87) 
Lindfelt, et al. 2010 (88) 
Gounden, et al. 2010 (89) 
Cabrera Figueroa, et al. 2010 (90) 
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Chen, et al. 2010 (91) 
Cabrera Figueroa, et al. 2010 (92) 
Uttayamakul, et al. 2010 (93) 
Kwara, et al. 2009 (94) 
Cohen, et al. 2009 (95) 
Leger, et al. 2009 (96) 
To, et al. 2009 (97) 
Mahungu, et al. 2009 (98) 
Cabrera, et al. 2009 (99) 
Kwara, et al. 2009 (100) 
Ramachandran, et al. 2009 (101) 
Ramachandran, et al. 2009 (102) 
Gupta, et al. 2008 (103) 
Kwara, et al. 2008 (36) 
Wyen, et al. 2008 (104) 
Nyakutira, et al. 2008 (105) 
Lowenhaupt, et al. 2007 (106) 
Saitoh, et al. 2007 (107) 
Motsinger, et al. 2006 (108) 
Wang, et al. 2006 (109) 
Ribaudo, et al. 2006 (110) 
Haas, et al. 2005 (111) 
Rodriguez-Novoa, et al. 2005 (112) 
Hasse, et al. 2005 (113) 
Liu, et al. 2017 (114) 
Haas, et al. 2004 (115) 
Rotger, et al. 2005 (116) 
Mathiesen, et al. 2006 (117) 
ter Heine, et al. 2008 (118) 
Puthanakit, et al. 2009 (119) 
Habtewold, et al. 2017 (120) 
Nemaura, et al. 2012 (121) 
Gengiah, et al. 2015 (122) 
Duarte, et al. 2017 (123) 
Aurpibul, et al. 2012 (124) 



16 
 
 

Nijhawan, et al. 2008 (125) 
Luo, et al. 2016 (126) 
Reay, et al. 2017 (127) 

Clinical CYP2B6 c.516 G>T is associated with increased efficacy (decreased viral 
load, increased T-cell count) of efavirenz therapy. 

Supports statement: 
Vujkovic, et al. 2017 (128) 
Ramachandran, et al. 2013 (64) 
Sarfo, et al. 2014 (69) 
Frasco, et al. 2012 (129) 
Habtewold, et al. 2011 (83) 
 
Does not support statement: 
Muller, et al. 2017 (130) 
Queiroz, et al. 2017 (131) 
Orrell, et al. 2016 (44) 
Dickinson, et al. 2016 (132) 
Dickinson, et al. 2015 (52) 
Bienvenu, et al. 2014 (66) 
Naftalin, et al. 2014 (67) 
Ngaimisi, et al. 2013 (72) 
Glass, et al. 2012 (133) 
Gounden, et al. 2010 (89) 
Uttayamakul, et al. 2010 (93) 
Saitoh, et al. 2007 (107) 
Haas, et al. 2005 (111) 
Haas, et al. 2004 (115) 
Puthanakit, et al. 2009 (119) 
Rohrich, et al. 2016 (27) 

Weak 

Clinical CYP2B6 c.516 G>T is associated with increased toxicity (CNS side effects) 
of efavirenz therapy. 

Supports statement: 
Gallien, et al. 2017 (41) 
Pinillos, et al. 2016 (48) 
Lee, et al. 2014 (71) 
Mukonzo, et al. 2013 (73) 
Strehlau, et al. 2011 (85) 
Cabrera Figueroa, et al. 2010 (90) 
Lowenhaupt, et al. 2007 (106) 

Moderate 
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Hasse, et al. 2005 (113) 
Haas, et al. 2004 (115) 
Rotger, et al. 2005 (116) 
Mathiesen, et al. 2006 (117) 
Torno, et al. 2008 (134) 
Nijhawan, et al. 2008 (125) 
Dhoro, et al. 2013 (135) 
Sanchez Martin, et al. 2013 (29) 
Anagnostopoulos, et al. 2013 (40) 
 
Does not support statement: 
Muller, et al. 2017 (130) 
Sandkovsky, et al. 2017 (43) 
Abdissa, et al. 2015 (53) 
Dhoro, et al. 2015 (55) 
Sarfo, et al. 2014 (69) 
Gounden, et al. 2010 (89) 
Ramachandran, et al. 2009 (101) 
Saitoh, et al. 2007 (107) 
Aurpibul, et al. 2012 (124) 

Clinical CYP2B6 c.516 G>T is associated with increased toxicity (hepatic injury) of 
efavirenz therapy. 

Supports statement: 
Elsharkawy, et al. 2013 (136) 
Mugusi, et al. 2012 (137) 
Yimer, et al. 2011 (138) 
Yimer, et al. 2012 (139) 
Manosuthi, et al. 2014 (140) 
 
Does not support statement: 
Queiroz, et al. 2017 (131) 

Moderate 

Clinical CYP2B6 c.516 G>T is associated with increased toxicity (QTc prolongation) 
of efavirenz therapy. 

Abdelhady, et al. 2016 (26) Weak 

Clinical CYP2B6 c.516 G>T is associated with discontinuation of efavirenz therapy. Supports statement: 
Dickinson, et al. 2016 (132) 
Dickinson, et al. 2015 (52) 
Wyen, et al. 2011 (141) 

Moderate 
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Does not support statement: 
Powers, et al. 2009 (142) 
Haas, et al. 2004 (115) 

Clinical No association found between CYP2B6*2 (c.64 C>T) and efavirenz plasma 
and/or hair concentrations. 

Sukasem, et al. 2013 (31) 
Manosuthi, et al. 2013 (74) 
Sukasem, et al. 2012 (79) 
Rohrich, et al. 2016 (27) 
Sanchez, et al. 2011 (82) 

Weak 

Clinical CYP2B6*2 (c.64 C>T) is associated with increased toxicity (CNS side 
effects) of efavirenz therapy. 

Usami, et al. 2007 (143) Weak 

Clinical CYP2B6*4 (c.785 A>G) is associated with increased efavirenz plasma 
concentrations.b  

Supports statement: 
Meng, et al. 2015 (51) 
Sukasem, et al. 2013 (31) 
Manosuthi, et al. 2013 (74) 
Mutwa, et al. 2012 (78) 
Sukasem, et al. 2012 (79) 
Heil, et al. 2012 (33) 
Maimbo, et al. 2012 (81) 
Sanchez, et al. 2011 (82) 
Lindfelt, et al. 2010 (88) 
Duarte, et al. 2017 (123) 
 
Does not support statement: 
Ribaudo, et al. 2010 (144) 
Chen, et al. 2010 (91) 
Wang, et al. 2006 (109) 
Rotger, et al. 2007 (38) 
Reay, et al. 2017 (127) 

Weak 

Clinical No association found between CYP2B6*5 (c.1459 C>T) and efavirenz 
plasma and/or hair concentrations. 

Bertrand, et al. 2014 (70) 
Sanchez, et al. 2011 (82) 
Sukasem, et al. 2013 (31) 
Manosuthi, et al. 2013 (74) 
Heil, et al. 2012 (33) 
Lindfelt, et al. 2010 (88) 

High 
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Ribaudo, et al. 2010 (144) 
Wyen, et al. 2008 (104) 
Rotger, et al. 2007 (38) 
Burger, et al. 2006 (145) 
Haas, et al. 2005 (111) 
Rohrich, et al. 2016 (27) 
Haas, et al. 2004 (115) 

Clinical CYP2B6*11 (c.136 A>G) is associated with increased efavirenz plasma 
concentrations. 

Supports statement: 
Mukonzo, et al. 2016 (46) 
Mukonzo, et al. 2014 (61) 
Mukonzo, et al. 2013 (73) 
Mukonzo, et al. 2009 (35) 
 
Does not support statement: 
Swart, et al. 2016 (49) 
Mukonzo, et al. 2014 (65) 
Swart, et al. 2013 (30) 
Sanchez, et al. 2011 (82) 

Weak 

Clinical No association found between CYP2B6*11 (c.136 A>G) and increased 
toxicity (CNS side effects) of efavirenz therapy. 

Mukonzo, et al. 2013 (73) Weak 

Clinical CYP2B6*16 (c.785 A>G and c.983 T>C) is associated with increased 
efavirenz plasma concentrations. 

Wang, et al. 2006 (109) Moderate 

Clinical No association found between CYP2B6*17 and efavirenz hair 
concentrations.c 

Rohrich, et al. 2016 (27) Weak 

Clinical CYP2B6*18 (c.983 T>C) is associated with increased efavirenz plasma 
and/or hair concentrations. 

Supports statement: 
Orrell, et al. 2016 (44) 
Bienczak, et al. 2016 (47) 
Swart, et al. 2016 (49) 
Rohrich, et al. 2016 (27) 
Dickinson, et al. 2015 (52) 
Dhoro, et al. 2015 (55) 
Sinxadi, et al. 2015 (59) 
Sarfo, et al. 2014 (69) 
Swart, et al. 2013 (30) 
Holzinger, et al. 2012 (76) 

High 
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Gandhi, et al. 2012 (77) 
Mutwa, et al. 2012 (78) 
Heil, et al. 2012 (33) 
Maimbo, et al. 2012 (81) 
Elens, et al. 2010 (87) 
Wyen, et al. 2008 (104) 
Gengiah, et al. 2015 (122) 
Reay, et al. 2017 (127) 
 
Does not support statement: 
Maganda, et al. 2016 (54) 
Olagunju, et al. 2015 (56) 
Olagunju, et al. 2015 (58) 
Bienvenu, et al. 2014 (66) 
Kwara, et al. 2009 (94) 
Kwara, et al. 2009 (100) 
Duarte, et al. 2017 (123) 

Clinical No association found between CYP2B6*18 (c.983 T>C) and increased 
efficacy (decreased viral load, increased T-cell count) of efavirenz therapy. 

Orrell, et al. 2016 (44) 
Dickinson, et al. 2016 (132) 
Rohrich, et al. 2016 (27) 
Dickinson, et al. 2015 (52) 
Bienvenu, et al. 2014 (66) 
Frasco, et al. 2012 (129) 

High 

Clinical CYP2B6*18 (c.983 T>C) is associated with decreased toxicity (CNS side 
effects) of efavirenz therapy. 

Supports statement: 
Dickinson, et al. 2016 (132) 
Dhoro, et al. 2013 (135) 
 
Does not support statement: 
Dhoro, et al. 2015 (55) 
Sarfo, et al. 2014 (69) 

Weak 

Clinical No association found between CYP2B6*18 (c.983 T>C) and discontinuation 
of efavirenz therapy. 

Dickinson, et al. 2016 (132) 
Dickinson, et al. 2015 (52) 

Moderate 

Clinical CYP2B6 g.15582 C>T is associated with increased efavirenz plasma 
concentrations. 

Supports statement: 
Sinxadi, et al. 2015 (59) 
Holzinger, et al. 2012 (76) 

Weak 
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Does not support statement: 
Evans, et al. 2015 (146) 
Dickinson, et al. 2015 (52) 

Clinical No association found between CYP2B6 g.15582 C>T and increased efficacy 
(decreased viral load) of efavirenz therapy. 

Dickinson, et al. 2016 (132) 
Dickinson, et al. 2015 (52) 

Moderate 

Clinical CYP2B6 g.15582 C>T is associated with increased toxicity (CNS side 
effects) of efavirenz therapy. 

Dickinson, et al. 2016 (132) 
 

Weak 

Clinical No association found between CYP2B6 g.15582 C>T and discontinuation of 
efavirenz therapy. 

Dickinson, et al. 2016 (132) 
Dickinson, et al. 2015 (52) 

Moderate 

Clinical CYP2B6 g.18492 T>C is associated with decreased efavirenz plasma 
concentrations. 

Manosuthi, et al. 2014 (147) 
Sukasem, et al. 2014 (148) 
Sukasem, et al. 2014 (149) 
Manosuthi, et al. 2013 (74) 
Sukasem, et al. 2012 (79) 

Moderate 

Clinical CYP2B6 g.21563 C>T is associated with increased efavirenz plasma 
concentrations. 

Sukasem, et al. 2012 (79) 
Manosuthi, et al. 2013 (74) 

Weak 

Clinical CYP2B6 poor metabolizers have decreased metabolite-to-efavirenz plasma 
concentration ratios. 

Aouri, et al. 2016 (150) Moderate 

Clinical CYP2B6 poor metabolizers have increased efavirenz plasma concentrations. Luetkemeyer, et al. 2015 (151) 
Sinxadi, et al. 2015 (59) 
Dooley, et al. 2015 (152) 
McIlleron, et al. 2013 (153) 
Dooley, et al. 2012 (154) 
Ribaudo, et al. 2010 (144) 
Leger, et al. 2009 (96) 
Haas, et al. 2009 (155) 
Arab-Alameddine, et al. 2009 (156) 
Rotger, et al. 2007 (38) 
Gross, et al. 2017 (157) 
Robarge, et al. 2016 (158) 
Fayet Mello, et al. 2011 (159) 

High 

Clinical CYP2B6 intermediate metabolizers have increased efavirenz plasma 
concentrations. 

Dooley, et al. 2015 (152) 
McIlleron, et al. 2013 (153) 
Dooley, et al. 2012 (154) 

High 
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Robarge, et al. 2016 (158) 
Clinical CYP2B6 poor metabolizers are at an increased risk of discontinuing 

efavirenz therapy. 
Cummins, et al. 2015 (160) 
Leger, et al. 2016 (161) 

Moderate 

Clinical No association found between CYP2B6 intermediate metabolizers and 
discontinuation of efavirenz therapy. 

Leger, et al. 2016 (161) Moderate 

Clinical CYP2B6 poor metabolizers have increased efavirenz toxicity (CNS side 
effects). 

Supports statement: 
Johnson, et al. 2013 (162) 
Ribaudo, et al. 2010 (144) 
Mollan, et al. 2017 (163) 
 
Does not support statement: 
Gross, et al. 2017 (157) 

Moderate 

Clinical CYP2B6 intermediate metabolizers have increased efavirenz toxicity (CNS 
side effects). 

Supports statement: 
Mollan, et al. 2017 (163) 
 
Does not support statement: 
Johnson, et al. 2013 (162) 
Ribaudo, et al. 2010 (144) 
Gross, et al. 2017 (157) 

Weak 

Clinical CYP2B6 poor metabolizers have increased efavirenz efficacy (decreased 
viral load, increased T-cell count). 

Supports statement: 
Frasco, et al. 2012 (129) 
Ribaudo, et al. 2010 (144) 
 
Does not support statement: 
Gross, et al. 2017 (157) 
Haas, et al. 2014 (164) 

Weak 

Clinical CYP2B6 intermediate metabolizers have increased efavirenz efficacy 
(decreased viral load, increased T-cell count). 

Supports statement: 
Frasco, et al. 2012 (129) 
 
Does not support statement: 
Ribaudo, et al. 2010 (144) 
Gross, et al. 2017 (157) 
Haas, et al. 2014 (164) 

Weak 

Clinical Efavirenz dosing based on CYP2B6 genotype (e.g., c.516 G>T) is associated 
with therapeutic efavirenz plasma concentrations. 

Bolton Moore, et al. 2017 (165) 
Hui, et al. 2016 (166) 

High 
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Damronglerd, et al. 2015 (167) 
Martin, et al. 2014 (168) 
Mukonzo, et al. 2014 (61) 
Sanchez, et al. 2011 (82) 
Cabrera Figueroa, et al. 2010 (90) 
Cabrera Figueroa, et al. 2010 (92) 
Nyakutira, et al. 2008 (105) 
Gatanaga, et al. 2007 (37) 
Mathiesen, et al. 2006 (117) 
ter Heine, et al. 2008 (118) 
Nemaura, et al. 2012 (121) 

Clinical Efavirenz dosing based on CYP2B6 genotype (e.g., c.516 G>T) maintains 
efficacy (as indicated by viral load and/or CD4+ T lymphocyte count). 

Damronglerd, et al. 2015 (167) 
Martin, et al. 2014 (168) 
Gatanaga, et al. 2007 (37) 

Moderate 

Clinical Efavirenz dosing based on CYP2B6 genotype (e.g., c.516 G>T) is associated 
with decreased toxicity (CNS side effects). 

Supports statement: 
Bushyakanist, et al. 2015 (169) 
Martin, et al. 2014 (168) 
Cabrera Figueroa, et al. 2010 (92) 
Gatanaga, et al. 2007 (37) 
Mathiesen, et al. 2006 (117) 
Torno, et al. 2008 (134) 
 
Does not support statement: 
Damronglerd, et al. 2015 (167) 

Moderate 

Clinical Efavirenz dose reduction in patients with elevated efavirenz plasma 
concentrations (e.g., CYP2B6 poor metabolizers) yields therapeutic 
efavirenz plasma concentrations, decreases toxicity (CNS side effects), and 
maintains efficacy (as indicated by viral load). 

Fayet Mello, et al. 2011 (159) High 

aRating scheme described in the Supplemental Material 
bThe CYP2B6*4 (c.785 A>G) functional assignment is “increased function.” However, CYP2B6*4 has frequently been associated with increased 
efavirenz plasma concentrations in clinical studies, likely due to the fact that it is often inherited with c.516 G>T, a SNP associated with decreased 
CYP2B6 function. Together, 785 A>G and 516 G>T comprise the CYP2B6*6 haplotype.   
cDecreased efavirenz concentrations in hair samples were associated with CYP2B6*17 in the South African Black cohort only.
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FIGURE S1. APPARENT ORAL CLEARANCE (CL/F) OF EFAVIRENZ (600 MG/DAY) IN HIV-

POSITIVE INDIVIDUALS GENOTYPED FOR CYP2B6 VARIANTS. Genotype predicted 

phenotypes were based on CYP2B6*6 and *18 alleles as described in Table 1 (main manuscript). 

The data were derived from 10 independent clinical studies (65, 70, 90, 99, 105, 120, 123, 156, 

166, 170).   
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