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CPIC UPDATES 

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are published 

in full on www.cpicpgx.org. Information will be reviewed and updated periodically on 

that website.  

 

LITERATURE REVIEW 

The PubMed® database (1966 to July 2018) was searched for the following keywords: 

(celecoxib OR diclofenac OR flurbiprofen OR ibuprofen OR meloxicam OR naproxen 

OR piroxicam OR tenoxicam OR sulindac OR nabumetone OR indomethacin) AND 

(CYP2C9 OR cytochrome p450 2c9) AND English[Language]) NOT review[Publication 

Type]. Using these search terms, 465 publications were identified. Due to the high 

linkage disequilibrium between CYP2C8*3 and CYP2C9*2 (Table S11, Figure S1), 

additional searches were conducted using the search terms: (diclofenac OR ibuprofen OR 

piroxicam) AND (CYP2C8 OR cytochrome p450 2c8). 91 articles were identified. Study 

inclusion criteria included publications that incorporated analyses for the association 

between CYP2C9 genotypes and nonsteroidal anti-inflammatory drugs (NSAIDs) 

pharmacokinetic and pharmacodynamic parameters as well as clinical outcomes. Non-

English manuscripts were excluded. Following the application of these inclusion and 

exclusion criteria, 138 publications were reviewed and included in the evidence table 

(Table S1). 

 

AVAILABLE GENETIC TEST OPTIONS 

Commercially available genetic testing options change over time. Below is some 

information that may assist in evaluating options. 

 

Desirable characteristics of pharmacogenetic tests, including naming of alleles and test 

report contents, have been extensively reviewed by an international group, including 

CPIC members (1). CPIC recommends that clinical laboratories adhere to these test 

reporting standards. CPIC gene-specific tables (see CYP2C9 Allele Definition Table, 

CYP2C9 Allele Functionality Table and CYP2C9 Allele Frequency Table 

(https://cpicpgx.org/cpic-guideline-for-nsaids-based-on-CYP2C9-genotype/) adhere to 
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these allele nomenclature standards (1). Moreover, the CYP2C9 Allele Definition Table, 

CYP2C9 Allele Functionality Table, and CYP2C9 Allele Frequency Table may be 

used to assemble lists of known functional and actionable pharmacogenetic variants and 

their population frequencies, which may inform decisions as to whether tests are 

adequately comprehensive in interrogations of alleles. Furthermore, the Association for 

Molecular Pathology and College of American Pathologists have published a joint 

recommendation for the key attributes of alleles recommended for clinical testing and a 

minimum set of variants that should be included in clinical genotyping assays for 

CYP2C9 (2). 

  

The Genetic Testing Registry (GTR) provides a central location for voluntary submission 

of genetic test information by laboratories and is available at 

http://www.ncbi.nlm.nih.gov/gtr/. 

 

LINKING GENETIC VARIABILITY TO VARIABILITY IN DRUG-RELATED 

PHENOTYPES 

 

Celecoxib. Celecoxib biotransformation to its primary metabolite, hydroxycelecoxib, is 

predominantly catalyzed by CYP2C9 (3-5). CYP3A4 plays a minor role (3, 6) (see 

PharmGKB celecoxib pathway; https://www.pharmgkb.org/pathway/PA165816736 (7)). 

The CYP2C9*3 no function variant causes a marked decrease in celecoxib metabolism in 

vitro and in vivo, and is associated with a significant increase in celecoxib plasma 

exposure and half-life in vivo (5, 8-14). The magnitude of the effects appears largest in 

CYP2C9 poor metabolizers (9, 11) (Figure S2). In contrast, the decreased function 

CYP2C9*2 variant is not associated with differences in celecoxib exposure or clearance 

(9, 10, 13, 15). 

 

Flurbiprofen. Flurbiprofen has been used as a phenotypic probe of CYP2C9 metabolism. 

No function CYP2C9 alleles, including CYP2C9*3, cause significantly decreased 

flurbiprofen metabolism in vitro, whereas the effect of CYP2C9*2 is modest (16-18). In 

vivo, CYP2C9*3 is associated with decreased flurbiprofen metabolism and clearance and 
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increased plasma exposure, whereas CYP2C9*2 is not associated with altered 

flurbiprofen exposure (19-22). 

 

Lornoxicam. Lornoxicam 5’hydroxylation is predominantly catalyzed by CYP2C9, and 

in vitro studies have shown that the no function CYP2C9*3 and *13 alleles markedly 

decrease intrinsic clearance, whereas CYP2C9*2 has little effect (23, 24). The in vivo 

effect of the CYP2C9*3 and *13 alleles are associated with reduced clearance, increased 

plasma concentrations, and a prolonged half-life (23, 25); the impact of the CYP2C9*2 

allele has not been studied in vivo (26, 27). 

 

Ibuprofen. Ibuprofen is usually available as a racemic mixture containing R (-) and S (+) 

ibuprofen. CYP2C9 is the major enzyme involved in the hydroxylation of S (+) 

ibuprofen, whereas R (-) ibuprofen hydroxylation is catalyzed by CYP2C8 and CYP2C9 

(28-30) (see PharmGKB Ibuprofen pathway; 

https://www.pharmgkb.org/pathway/PA166041114 (31)). The CYP2C9*3 allele is 

associated with decreased clearance, increased plasma concentration and prolonged half-

life of the R (-) and S (+) enantiomers in vivo (32-36), whereas the effect of CYP2C9*2 is 

moderate, more pronounced with R (-) ibuprofen, and likely impacted by linkage 

disequilibrium with the decreased function CYP2C8*3 variant allele (33-37) (Figure S3). 

 

Meloxicam. Meloxicam hydroxylation is catalyzed mainly by CYP2C9, and to a minor 

extent by CYP3A4 (38). The no function CYP2C9 alleles CYP2C9*3 and CYP2C9*13 

are associated with decreased meloxicam metabolism, decreased clearance, and increased 

plasma concentrations in vivo, and the magnitude of these effects was largest in CYP2C9 

poor metabolizers (39-43). The CYP2C9*2 decreased function allele appears to be 

associated with a modest decrease in meloxicam metabolism and clearance (39, 40) 

(Figure S4). 

 

Piroxicam and tenoxicam. Piroxicam and tenoxicam intrinsic clearance are also 

markedly decreased by the CYP2C9*3 allele in vitro (44). Although the number of 

available in vivo studies is very limited, the CYP2C9*2 and *3 alleles are each associated 
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with reduced piroxicam clearance and higher plasma concentrations, with observation of 

a dramatic prolongation in half-life to 420 hours in a single CYP2C9*3/*3 subject (45, 

46). The published evidence with tenoxicam is scarce. The CYP2C9*3 allele is also 

associated with increased plasma tenoxicam concentrations in vivo, whereas the effect of 

CYP2C9*2 is less pronounced (44, 47, 48). 

 

Diclofenac. Diclofenac 4’hydroxylation is predominantly catalyzed by CYP2C9, and 

used as a phenotypic probe of CYP2C9 metabolic activity (4). Diclofenac undergoes 

metabolism by multiple other pathways (see PharmGKB pathway; 

https://www.pharmgkb.org/pathway/PA166163705)), including 5-hydroxylation by 

CYP2C8 (49) and acyl glucuronidation by UGT2B7 (50). CYP2C9 no function alleles, 

such as CYP2C9*3, significantly decrease diclofenac 4-hydroxylation in vitro and in vivo 

(17, 44, 51-58); however, these effects on diclofenac metabolism did not translate into 

altered diclofenac pharmacokinetics in vivo such that CYP2C9*3 is not associated with 

decreased diclofenac oral clearance or increased plasma concentrations (59-62). The 

CYP2C9*2 allele also is not associated with altered diclofenac pharmacokinetics (59, 60). 

 

Other NSAIDs that do not rely on CYP2C9-mediated metabolism as their primary 

clearance pathway in vivo include aspirin, naproxen (UGT2B7, CYP1A2), sulindac 

(multiple pathways), etoricoxib (CYP3A4), parecoxib (CYP3A4), and valdecoxib 

(CYP3A4) (63).   

 

LEVELS OF EVIDENCE 

The evidence summarized in Supplemental Table S1-S12 is graded using a scale 

modified slightly from Valdes et al. (64) 

High: Evidence includes consistent results from well-designed, well-conducted 

studies. 

Moderate: Evidence is sufficient to determine effects, but the strength of the 

evidence is limited by the number, quality, or consistency of the individual 

studies; generalizability to routine practice; or indirect nature of the evidence. 
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Weak: Evidence is insufficient to assess the effects on health outcomes because of 

limited number or power of studies, important flaws in their design or conduct, 

gaps in the chain of evidence, or lack of information. 

 

STRENGTH OF DOSING RECOMMENDATIONS 

CPIC’s dosing recommendations are based on weighing the evidence from a combination 

of preclinical functional and clinical data (Supplemental Tables S1-S12) as well as on 

some existing disease-specific consensus guidances (65-67). Some of the factors that are 

taken into account in evaluating the evidence supporting dosage recommendations 

include: in vivo clinical outcome data for NSAIDs, in vivo pharmacokinetic and 

pharmacodynamic data for NSAIDs, in vitro enzyme activity of expressed wild-type or 

variant-containing CYP2C9, in vitro CYP2C9 enzyme activity from tissues isolated from 

individuals of known CYP2C9 genotypes, in vivo pre-clinical pharmacokinetic and 

pharmacodynamic studies, and in vitro studies of CYP2C9 protein stability.  

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by 

clinicians. CPIC uses a slight modification of a transparent and simple system for just 

four categories for recommendations adopted from the rating scale for evidence-based 

recommendations on the use of antiretroviral agents (68):  

 

Strong recommendation for the statement: “The evidence is high quality and the 

desirable effects clearly outweigh the undesirable effects.” 

Moderate recommendation for the statement: “There is a close or uncertain balance as to 

whether the evidence is high quality and the desirable clearly outweigh the undesirable 

effects.” 

Optional recommendation for the statement: “The desirable effects are closely balanced 

with undesirable effects, or the evidence is weak or based on extrapolations. There is 

room for differences in opinion as to the need for the recommended course of action.” 

No recommendation: “There is insufficient evidence, confidence, or agreement to 

provide a recommendation to guide clinical practice at this time.” 
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OTHER CONSIDERATIONS 

Variation in other genes may also influence outcomes of NSAID therapy, but the 

evidence is insufficient to recommend using these variants to guide NSAID dosing at this 

time.  Several NSAIDs, including ibuprofen, diclofenac, and piroxicam (28, 49, 69), are 

metabolized by CYP2C8, and clearance of these agents may be altered in individuals who 

carry decreased function alleles for CYP2C8 (e.g. CYP2C8*3 or CYP2C8*4).  Several 

studies have investigated the impact of the CYP2C8*3 allele (rs11572080 and 

rs10509681) (Tables S1-S11).  As noted above, the CYP2C8*3 allele is in strong linkage 

disequilibrium with the CYP2C9*2 allele (Figure S1), and the number of individuals in 

these studies who carried only CYP2C8*3 was insufficient to dissect the relative 

contribution of this variant from that of CYP2C9*2.  The CYP2C8*4 allele (rs1058930) 

also exhibited decreased metabolism of ibuprofen and diclofenac in vitro (28, 70, 71), but 

there are limited data describing the role of this variant on pharmacokinetics or outcomes 

in vivo (54, 72).   

 

The impact of genetic variation in the drug targets, COX-1 (PTGS1) and COX-2 

(PTGS2), on the outcomes of NSAID therapy has also been investigated.  The results of 

studies evaluating these gene-drug interactions in the context of cancer prevention (73-

79), prevention of cardiovascular events with low-dose aspirin (80-84), analgesic 

response (85), risk of adverse cardiovascular events (86, 87) or liver toxicity (88) are 

conflicting, and the reported associations have not been replicated in independent 

cohorts.  Thus, additional research is necessary to clarify whether these variants should 

be incorporated into clinical decision making. 

 

RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN EHR 

WITH CDS  

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) 

can help guide clinical pharmacogenetics at the point of care (89-93).  See 

https://cpicpgx.org/cpic-guideline-for-nsaids-based-on-CYP2C9-genotype/ for resources 

to support the adoption of CPIC guidelines within an EHR.  Based on the capabilities of 

various EHRs and local preferences, we recognize that approaches may vary across 
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organizations. Our intent is to synthesize foundational knowledge that provides a 

common starting point for incorporating the use of CYP2C9 genotype results to guide 

NSAID use and use in an EHR.   

 

Effectively incorporating pharmacogenetic information into an EHR to optimize drug 

therapy should have some key attributes.  Pharmacogenetic results, an interpreted 

phenotype, and a concise interpretation or summary of the result must be documented in 

the EHR (94, 95). To incorporate a phenotype in the EHR in a standardized manner, 

genotype test results provided by the laboratory must be consistently translated into an 

interpreted phenotype (Table 1, main manuscript).  Because clinicians must be able to 

easily find the information, the interpreted phenotype may be documented as a problem 

list entry or in a patient summary section; these phenotypes are best stored in the EHR at 

the “person level” rather than at the date-centric “encounter level”.  Additionally, results 

should be entered as standardized and discrete terms to facilitate using them to provide 

point-of-care CDS (89, 96).  

 

Because pharmacogenetic results have lifetime implications and clinical significance, 

results should be placed into a section of the EHR that is accessible independent of the 

test result date to allow clinicians to quickly find the result at any time after it is initially 

placed in the EHR.  To facilitate this process, CPIC is providing gene-specific 

information figures and tables that include full diplotype to phenotype tables, diagram(s) 

that illustrate how CYP2C9 pharmacogenetic test results could be entered into an EHR, 

example EHR consultation/genetic test interpretation language and widely used 

nomenclature systems for genes relevant to the CPIC guideline (see 

https://www.pharmgkb.org/page/CYP2C9RefMaterials.  

 

Point-of-care CDS should be designed to effectively notify clinicians of prescribing 

implications at any time after the test result is entered into the EHR. CPIC provides gene-

drug specific tables that offer guidance to achieve these objectives with diagrams that 

illustrate how point-of-care CDS should be entered into the EHR, example pre- and post-

test alert language, and widely used nomenclature systems for drugs relevant to the CPIC 
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guideline (see https://cpicpgx.org/cpic-guideline-for-nsaids-based-on-CYP2C9-

genotype/).   

 

 

EFFECT SIZE ESTIMATION USING META-ANALYSES 

Meta-analyses were performed to assess the effect of the CYP2C9*2 and CYP2C9*3 

alleles on systemic exposure for each of the NSAIDs metabolized by CYP2C9. Sample 

sizes and reported AUC data were extracted from clinical pharmacokinetic studies 

reviewed for this guideline.  Studies were excluded from the meta-analysis if 1) plasma 

drug concentrations were not measured, 2) mean and standard deviation of AUC was not 

reported or could not be estimated, 3) CYP2C9*2 or CYP2C9*3 genotypes were not 

reported. If less than three studies could be identified that contributed data to at least one 

genotype comparison for a given NSAID, the meta-analysis was not performed. This 

resulted in meta-analyses for celecoxib, ibuprofen, and meloxicam (Figures S2-S4).  

The effect of each variant CYP2C9 diplotype (CYP2C9*1/*3, CYP2C9*3/*3, 

CYP2C9*1/*2, CYP2C9*2/*2, and CYP2C9*2/*3) relative to CYP2C9*1/*1 was 

determined using a random effects model with Hartung-Knapp adjustment. The results 

are reported as the ratio of the mean (ROM) AUC in the variant diplotype to that of the 

CYP2C9*1/*1 control group.  This allowed pooling of studies regardless of dose or 

number of doses administered.  Statistical analyses were performed using R software 

package meta.  
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 SUPPLEMENTAL TABLE S1. EVIDENCE LINKING CYP2C9 GENOTYPE WITH CELECOXIB PHENOTYPE 

Type of 
experimental 
model 

Major findings References Level of 
evidence 

In vitro CYP2C9 is the major enzyme involved in the formation of 
hydroxycelecoxib, which is the primary celecoxib metabolite. 

Tang, et al. (2000) (3) 
Sandberg, et al. (2002) (5) 
Murayama, et al.  (2018) (4) 

High  

In vitro CYP3A4 plays a minor role in celecoxib metabolism. Tang, et al. (2000) (3) 
Rodrigues, et al. (2006) (6) 

High 

In vitro  
Clinical 

Celecoxib inhibits the metabolism of CYP2D6 substrates both in 
vitro and in vivo. 

Werner, et al. (2003) (97) Moderate 

In vitro CYP2C9*2 exhibits decreased CYP2C9 catalytic activity and 
decreased metabolism of celecoxib. 

Tang, et al. (2001) (10) 
Sandberg , et al. (2002) (5) 

Weak 

In vitro CYP2C9*3 exhibits substantially decreased CYP2C9 catalytic 
activity and decreased metabolism of celecoxib. 

Tang, et al. (2001) (10) 
Sandberg, et al. (2002) (5) 

High 

Clinical CYP2C9*3 is associated with decreased celecoxib metabolism 
(increased celecoxib plasma concentration and decreased oral 
clearance). 

Tang, et al. (2001) (10) 
Brenner, et al. (2003) (15) 
Kirchheiner, et al. (2003) (9) 
Fries, et al. (2006) (98) 
Lundblad, et al. (2006) (8) 
Prieto-Perez, et al. (2013) (13) 
Liu, et al. (2015) (12) 
Kim, et al. (2017) (11) 
Stempak, et al. (2005) (14) 

High 

Clinical CYP2C9*2 is not associated with decreased celecoxib metabolism 
(increased celecoxib plasma concentration and decreased oral 
clearance). 

Tang, et al. (2001) (10) 
Brenner, et al. (2003) (15) 
Kirchheiner, et al. (2003) (9) 
Fries, et al. (2006) (98) 
Prieto-Perez, et al. (2013) (13) 

Moderate 
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Clinical CYP2C9*13 is associated with decreased celecoxib metabolism 
(increased celecoxib plasma concentration and decreased oral 
clearance). 

Kim, et al. (2017) (11) Weak 
  

Clinical Impaired celecoxib metabolism due to CYP2C9 decreased function 
alleles may be associated with increased toxicity of celecoxib 
therapy. 

Stempak, et al. (2005) (14) 
Chan, et al. (2009) (99) 
Gupta, et al. (2015) (100) 

Weak 
 

Clinical CYP2C9*3 is associated with enhanced efficacy/response to 
celecoxib or with the protective effect of celecoxib on colorectal 
adenoma risk. 

Murto, et al. (2015) (101) 
Chan, et al. (2009) (99) 

Weak 

Clinical CYP2C9 poor metabolizers have higher plasma celecoxib exposure 
compared to normal metabolizers. 

Werner, et al. (2002) (102) Weak 
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SUPPLEMENTAL TABLE S2. EVIDENCE LINKING CYP2C9 GENOTYPE WITH FLURBIPROFEN PHENOTYPE 

Type of 
experimental 
model 

Major findings References Level of 
evidence 

In vitro CYP2C9 is the major metabolizing enzyme for flurbiprofen Yamazaki, et al. (1998) (17) 
Tracy, et al. (1996) (103) 
Tracy, et al. (1995) (104) 
Tracy , et al. 2002) (18) 

High  

In vitro CYP2C9*3 and other CYP2C9 alleles (CYP2C9*5, *8, *13, *16, 
*19, *23, *31, *39, *42, *45 and *52) exhibit significantly 
decreased CYP2C9 catalytic activity and decreased metabolism of 
flurbiprofen. 

Wang, et al. (2015) (16) 
Yamazaki, et al. (1998) (17) 
Tracy, et al. (2002) (18) 

High 

In vitro CYP2C9*2 exhibits moderately decreased metabolism of 
flurbiprofen. 

Wang, et al. (2015) (16) 
Yamazaki, et al. (1998) (17) 

High 

In vitro Using flurbiprofen as a substrate, other CYP2C9 alleles 
(CYP2C9*11, *14, *27, *29, *36, *40, *41, *49 and *55) exhibit 
lower catalytic activity than CYP2C9*2, but higher than 
CYP2C9*3. 

Wang, et al. (2015) (16)  Moderate 

In vitro Using flurbiprofen as a substrate, other CYP2C9 alleles 
(CYP2C9*34, *37, *38, *44, *46, *47, *48, *50, *51 and *54) 
exhibit lower catalytic activity than CYP2C9*1, but higher than 
CYP2C9*2. 

Wang, et al. (2015) (16) Moderate 

Clinical CYP2C9*3 is associated with decreased flurbiprofen metabolism 
(increased flurbiprofen plasma concentration and decreased oral 
clearance). 

Swar, et al. (2016) (19) 
Lee, et al. (2015) (20) 
Daali, et al. (2012) (105) 
Lee, et al. (2003) (21) 
Lee, et al. (2003) (22) 

High 

Clinical CYP2C9*2 is not associated with decreased flurbiprofen 
metabolism. 

Vogl, et al. (2015) (106) (107) 
Swar, et al. (2016) (19) 
Daali, et al. (2012) (105) 
Lee, et al. (2003) (21) 
Lee, et al. (2003) (22) 

Moderate  
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SUPPLEMENTAL TABLE S3. EVIDENCE LINKING CYP2C9 GENOTYPE WITH LORNOXICAM PHENOTYPE 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

In vitro Lornoxicam 5-hydroxylation is catalyzed exclusively by CYP2C9 Bonnabry, et al. (1996) (108) Moderate 
In vitro CYP2C9*3 and CYP2C9*13 exhibit significantly decreased 

metabolism of lornoxicam. 
Guo, et al. (2005) (23) 
Iida, et al. (2004) (24) 

Moderate 

In vitro CYP2C9*2 does not exhibit decreased lornoxicam metabolism. Iida, et al. (2004) (24) Weak 
Clinical CYP2C9*3 is associated with decreased lornoxicam metabolism 

(increased lornoxicam plasma concentration and decreased oral 
clearance). 

Choi, et al. (2011) (25) 
Liu, et al. (2006) (26) 
Guo, et al. (2005) (23) 
Zhang, et al. (2005) (27)  

Moderate 
 
 
 

Clinical CYP2C9*13 is associated with decreased lornoxicam metabolism 
(increased lornoxicam plasma concentration and decreased oral 
clearance). 

Choi, et al. (2011) (25) 
Guo, et al. (2005) (23) 
Zhang, et al. (2005) (27) 

High 
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SUPPLEMENTAL TABLE S4. EVIDENCE LINKING CYP2C9 GENOTYPE WITH IBUPROFEN PHENOTYPE 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

In vitro CYP2C9 is the major metabolizing enzyme for S (+) 
ibuprofen and R (-) ibuprofen hydroxylation. CYP2C8 
also plays a minor role. 

Chang, et al. (2008) (28) 
McGinnity, et al. (2000) (29) 
Hamman, et al. (1997) (30) 

High 

In vitro CYP2C9*2 exhibits decreased ibuprofen 
hydroxylation. 

Hamman, et al. (1997) (30) Moderate 

Clinical CYP2C9*3 is associated with decreased S (+) and  
R (-) ibuprofen metabolism (increased ibuprofen 
plasma concentration and decreased oral clearance of 
S (+) ibuprofen, R (-) ibuprofen, and racemic 
ibuprofen). 

Ochoa, et al. (2015) (32) 
Karaźniewicz-Lada, et al. (2009) (33) 
López-Rodríguez, et al. (2008) (34) 
García-Martín, et al. (2004) (35) 
Kirchheiner, et al. (2002) (36) 

Moderate  

Clinical CYP2C9*2 is associated with moderately decreased S 
(+) ibuprofen metabolism (increased S (+) ibuprofen 
plasma concentration and decreased oral clearance). 
CYP2C9*2 is not associated with decreased R (-) 
ibuprofen metabolism. 

Ochoa, et al. (2015) (32) 
Karaźniewicz-Łada, et al. (2009) (33) 
López-Rodríguez, et al. (2008) (34) 
Martinez, et al. (2004) (37) 
García-Martín, et al. (2004) (35) 
Kirchheiner, et al. (2002) (36) 

Weak 

Clinical CYP2C9*3 is associated with increased ibuprofen 
pharmacodynamic effects (increased maximal 
inhibition of thromboxane B2 formation). 

López-Rodríguez, et al. (2008) (34) 
Kirchheiner, et al. (2002) (36) (109) 
 

Weak 

Clinical CYP2C9*2 is not associated with increased ibuprofen 
pharmacodynamic effects  

López-Rodríguez, et al. (2008) (34) 
Kirchheiner, et al. (2002) (36) 

Weak 
 

Clinical  CYP2C9*2 and CYP2C9*3 may be associated with 
increased odds of response to ibuprofen. 

Durrmeyer, et al. (2010) (110) 
Samowitz, et al. (2006) (109) 

Weak 
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SUPPLEMENTAL TABLE S5. EVIDENCE LINKING CYP2C9 GENOTYPE WITH MELOXICAM PHENOTYPE 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

In vitro Meloxicam hydroxylation is mainly catalyzed by CYP2C9. 
CYP3A4 plays a minor role. 

Chesné, et al. (1998) (38) Moderate 

Clinical CYP2C9*3 is associated with significantly decreased 
meloxicam metabolism (increased meloxicam plasma 
concentration and decreased oral clearance). 

Hasunuma, et al. (2016) (40) 
Zhang, et al. (2014) (41) 
Lee, et al. (2014) (42) 
Aoyama, et al. (2017) (39) 

Moderate 

Clinical CYP2C9*3/*3 genotype is associated with significantly lower 
meloxicam metabolism compared to CYP2C9*1/*3.   

Lee, et al. (2014) (42) 
Aoyama, et al. (2017) (39) 

Moderate 

Clinical CYP2C9*13 is associated with significantly decreased 
meloxicam metabolism (increased meloxicam plasma 
concentration and decreased oral clearance). 

Bae, et al. (2011) (43) Moderate 

Clinical CYP2C9*2 is associated with moderately decreased 
meloxicam metabolism (increased meloxicam plasma 
concentration and decreased oral clearance). 

Hasunuma, et al. (2016) (40) 
Aoyama, et al. (2017) (39) 

Weak 

Clinical CYP2C9*2/*2 genotype is associated with decreased 
meloxicam metabolism, while CYP2C9*1/*2 genotype has a 
marginal impact. 

Hasunuma, et al. (2016) (40) 
Aoyama, et al. (2017) (39) 

Weak 

Clinical CYP2C9*3 is associated with increased meloxicam 
pharmacodynamic effects (increased maximal inhibition of 
thromboxane B2 formation).    

Lee, et al. (2014) (42) 
Aoyama, et al. (2017) (39) 

Moderate 

Clinical CYP2C9*3/*3 genotype is associated with increased 
meloxicam pharmacodynamic effects compared to 
CYP2C9*1/*3 (increased maximal inhibition of thromboxane 
B2 formation).   

Lee, et al. (2014) (42) 
Aoyama, et al. (2017) (39) 

Moderate 

Clinical CYP2C9*13 is associated with increased meloxicam 
pharmacodynamic effects (increased maximal inhibition of 
thromboxane B2 formation). 

Bae, et al. (2011) (43) Weak 
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Clinical CYP2C9*3 may be associated with increased risk of 
meloxicam toxicity. 

Ishihara, et al. (2014) (111) Weak 
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SUPPLEMENTAL TABLE S6. EVIDENCE LINKING CYP2C9 GENOTYPE WITH PIROXICAM PHENOTYPE 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

In vitro CYP2C9*3 exhibits significantly decreased CYP2C9 
catalytic activity and decreased metabolism of piroxicam.    

Takanashi, et al. (2000) (44) Moderate 

Clinical CYP2C9*2 and CYP2C9*3 are associated with decreased 
piroxicam metabolism (increased piroxicam plasma 
concentration and decreased oral clearance).   

Perini, et al.  (2006) (45) 
Perini, et al.  (2005) (46) 

Moderate 

Clinical CYP2C9*2 and CYP2C9*3 are associated with increased 
piroxicam pharmacodynamic effects (increased maximal 
inhibition of thromboxane B2 formation). 

Perini, et al. (2006) (45) 
Calvo, et al. (2017) (112) 

Moderate 

Clinical CYP2C9*2 and *3 were not associated with increased odds 
of response to piroxicam.   

Calvo, et al. (2017) (112) Weak 

 



19 
 

SUPPLEMENTAL TABLE S7. EVIDENCE LINKING CYP2C9 GENOTYPE WITH TENOXICAM PHENOTYPE 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

In vitro CYP2C9*3 exhibits decreased CYP2C9 catalytic activity 
and decreased metabolism of tenoxicam.  

Takanashi, et al. (2000) (44)  Moderate 

Clinical CYP2C9*3 is associated with decreased tenoxicam 
metabolism (increased tenoxicam plasma concentration 
and decreased oral clearance). 

Peiro, et al. (2009) (47) 
Vianna-Jorge, et al. (2004) (48) 

Moderate 
 

Clinical CYP2C9*2 may be associated with increased tenoxicam 
plasma concentration and decreased oral clearance, but 
the effect is less pronounced than CYP2C9*3.   

Vianna-Jorge, et al. (2004) (48) 
Peiro, et al. (2009) (47) 

Weak 



20 
 

SUPPLEMENTAL TABLE S8. EVIDENCE LINKING CYP2C9 GENOTYPE WITH NSAID PHENOTYPE 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

Clinical CYP2C9 genotypes are not associated with NSAID 
efficacy (risk of adenoma, colorectal cancer, ovarian 
cancer, bladder cancer).    

Poole, et al. (2009) (113) 
McGreavey, et al. (2005) (114) 
Jaja, et al. (2015) (115) 
Barry, et al. (2013) (116) 
Pinheiro, et al. (2010) (117) 
Siemes, et al. (2009) (118) 
Fortuny, et al. (2006) (119) 
Wang, et al. (2017) (120) 
Scherer, et al. (2014) (121) 

Weak 

Clinical CYP2C9*3 may be associated with increased risk of 
NSAID gastrointestinal toxicity (bleeding, ulcer). 

Figueiras, et al. (2016) (122) 
Carbonell, et al.(2010) (123) 
Blanco, et al. (2008) (124) 
Pilotto, et al. (2007) (125) 
Vonkeman, et al. (2006) (126) 
Martinez, et al. (2004) (127) 
Martin, et al. (2001) (128) 
Ishihara, et al. (2014) (111) 

Weak 

Clinical CYP2C9*2 is not associated with increased risk of 
NSAID gastrointestinal toxicity (bleeding, ulcer).   

Figueiras, et al. (2016) (122) 
Carbonell, et al. (2010) (123) 
Ma, et al. (2008) (129) 
Blanco, et al. (2008) (124) 
Pilotto, et al. (2007) (125) 
Vonkeman, et al. (2006) (126) 
Martinez, et al. (2004) (127) 
Martin, et al. (2001) (128) 

Weak 
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SUPPLEMENTAL TABLE S9. EVIDENCE LINKING CYP2C9 GENOTYPE WITH ACECLOFENAC, ASPIRIN, 

DICLOFENAC, INDOMETHACIN, LUMIRACOXIB, METAMIZOLE, NABUMETONE AND NAPROXEN PHENOTYPE 

(NO RECOMMENDATION PROVIDED IN GUIDELINE) 

Type of 
experimental model  

Major findings References Level of 
evidence 

Aceclofenac 
In vitro CYP2C9 is the major metabolizing enzyme for 

aceclofenac. 
Bort, et al. (1996) (130) Weak 

Aspirin 
Clinical CYP2C9*2 and  CYP2C9*3 are not associated with 

increased risk of aspirin toxicity (gastrointestinal 
complaints, ulcer, urticaria). 

Palikhe, et al. (2011) (131) 
Shiotani , et al. (2009) (132) 
Van Oijen, et al. (2005) (133) 
Jalil, et al. (2015) (134) 

Moderate 

Clinical CYP2C9*2 and CYP2C9*3 are not associated with 
the protective effect of aspirin on colon adenoma 
risk. 

Bigler, et al. (2001) (135) 
Chan, et al. (2004) (136) 
Barry, et al. (2013) (116) 

Moderate 

Diclofenac 
In vitro CYP2C9 is the major metabolizing enzyme for 

diclofenac 4’hydroxylation. CYP2C8 and CYP3A4 
play a minor role. UGT2B7 plays a major role in 
diclofenac acyl glucuronidation. 

Murayama, et al. (2018) (4) 
den Braver, et al. (2016) (137) 
Grillo, et al. (2008) (138) 
Yan, et al. (2005) (139) 
Kuehl, et al. (2005) (50) 
Bort, et al. (1999) (49) 
Mancy, et al. (1999)(69) 
Shen, et al. (1999) (140) 
Tang, et al. (1999) (141) 
Yamazaki, et al. (1998) (17) 
Transon, et al. (1996) (142) 
Leemann, et al. (1993) (143) 

High 

In vitro CYP2C9*3 and other CYP2C9 alleles (CYP2C9*5, 
*8, *13, and *35) exhibit significantly decreased 

Xia, et al. (2014) (51) 
Zi, et al. (2010) (53)  
Maekawa, et al. (2009) (144) 

High 
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CYP2C9 catalytic activity and decreased metabolism 
of diclofenac. 

Guo, et al. (2005) (55) 
Yasar, et al. (2001) (60) 
Dickmann, et al. (2001) (58) 
Ieiri, et al. (2000) (145) 
Takanashi, et al. (2000) (44) 
Yamazaki, et al. (1998) (17) 
Crespi, et al. (1997) (146) 
Zhou, et al. (2006) (147) 
Lee, et al. (2014) (148) 
Maekawa, et al. (2009) (144) 

In vitro CYP2C9*2 does not exhibit significantly decreased 
diclofenac metabolism. 

Xia, et al. (2014) (51) 
Crespi, et al. (1997) (146) 
Luo, et al. (2014) (149) 
Yasar, et al. (2001) (60) 
Yamazaki, et al. (1998) (17) 

Moderate 

In vitro Using diclofenac as a substrate, other CYP2C9 alleles 
(CYP2C9*25, *26, *28, *30, and *33) exhibit 
significantly decreased or absent CYP2C9 catalytic 
activity. 

Maekawa, et al. (2006) (150) 
Maekawa, et al. (2009) (144) 

Moderate 

In vitro CYP2C9*58 (P337T) exhibited moderately decreased 
metabolism of diclofenac. 

Luo, et al. (2014) (149) Weak 

Clinical CYP2C9*3 is associated with decreased diclofenac 
metabolism (higher diclofenac to 4’hydroxy-
diclofenac metabolic ratio in urine). 

Llerena, et al. (2014) (52) 
Dorado, et al. (2008) (54) 
Dorado, et al. (2003) (56) 
Dorado, et al. (2003) (57) 

Weak 

Clinical CYP2C9*3 is not associated with increased 
diclofenac plasma concentration or decreased oral 
clearance. 

Kirchheiner, et al. (2003) (59) 
Morin, et al. (2001) (61) 
Shimamoto, et al. (2000) (62) 
Yasar, et al. (2001) (60) 

Weak 

Clinical CYP2C9*2 is not associated with decreased 
diclofenac metabolism (diclofenac to 4’hydroxy-
diclofenac metabolic ratio in urine). 

Llerena, et al. (2014) (52) 
Dorado, et al. (2003) (57) 
Dorado, et al. (2003) (151) 

Weak 
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Clinical CYP2C9*2 is not associated with increased 
diclofenac plasma concentrations or decreased oral 
clearance. 

Kirchheiner, et al. (2003) (59) 
Morin, et al. (2001) (61)  
Yasar, et al. (2001) (60) 

Weak 

Clinical CYP2C9*3 may be associated with increased risk of 
diclofenac toxicity. 

Ishihara, et al. (2014) (111) 
Aithal, et al. (2000) (152) 

Weak 

Indomethacin 
In vitro Indomethacin O-demethylation is catalyzed 

predominantly by CYP2C9. 
Nakajima, et al. (1998) (153) Moderate 

Clinical CYP2C9*3/*3 genotype was observed in a case of 
indomethacin-associated bleeding. 

Zarza, et al. (2003) (154) Weak 

Clinical  CYP2C9 rs2153628 and CYP2C9*2 may be 
associated with increased odds of response to 
indomethacin. 

Smith, et al. (2017) (155) Weak 

Lumiracoxib 
In vitro Lumiracoxib hydroxylation is catalyzed 

predominantly by CYP2C9. 
Li, et al. (2008) (91) Moderate 

Metamizole 
Clinical CYP2C9*3 is associated with moderately decreased 

metamizole metabolism. 
Martínez, et al. (2014) (156) Moderate 

Clinical CYP2C9*2 is not associated with decreased 
metamizole metabolism. 

Martínez, et al. (2014) (156) Weak 

Clinical CYP2C9 genotype is not associated with the risk of 
developing anaphylaxis in patients treated with 
metamizole. 

García-Martín, et al. (2015) 
(157) 

Weak 

Nabumetone 
In vitro Nabumetone metabolism is mainly mediated by 

CYP2C9. 
Matsumoto, et al. (2011) (158) Moderate 

Naproxen 
In vitro CYP2C9 plays a major role in naproxen 

demethylation. UGT2B7 plays a major role in 
naproxen acyl glucuronidation. CYP1A2 also plays a 
role in naproxen metabolism. CYP2C8 may play a 
minor role. 

Bowalgaha, et al. (2005) (159) 
Tracy, et al.  (1997) (160) 
Miners, et al. (1996) (161) 
Rodrigues, et al. (1996) (162) 

High 
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In vitro CYP2C9*2 and CYP2C9*3  exhibit decreased (S)-
naproxen demethylation. 

Wei, et al. (2007) (163) Moderate 

Clinical CYP2C9*3 is not associated with increased naproxen 
plasma concentrations or decreased oral clearance 

Bae, et al. (2009) (164) Weak 
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SUPPLEMENTAL TABLE S10. EVIDENCE LINKING CYP2C8 GENOTYPE WITH IBUPROFEN AND DICLOFENAC 

PHENOTYPE (NO RECOMMENDATION PROVIDED IN GUIDELINE) 

Type of 
experimental 
model  

Major findings References Level of 
evidence 

Ibuprofen 
In vitro CYP2C8 plays a minor role in ibuprofen metabolism as 

compared to CYP2C9.  
Chang, et al. (2008) (28) 
Yu, et al. (2013) (71) 

Moderate 

In vitro CYP2C8*3 and CYP2C8*4 alleles exhibit decreased 
CYP2C8 catalytic activity and decreased ibuprofen 
metabolism. 

Chang, et al. (2008) (28) 
Yu, et al. (2013) (71) 

Weak 

Clinical CYP2C8*3 is associated with decreased metabolism of 
ibuprofen (increased ibuprofen plasma concentrations 
and decreased oral clearance, especially for R (-) 
ibuprofen). 

Martinez, et al. (2005) (37) 
Garcia-Martin, et al. (2004) (35) 
Karatzniewicz-Lada, et al.  (2009) (33) 
Ocha, et al. (2015) (32) 
Lopez-Rodriguez, et al. (2008) (34) 

Weak 

Clinical CYP2C8*3 and CYP2C9*2 are associated with lower 
ibuprofen dose requirements. 

Zajic, et al. (2019) (165) Moderate 

Clinical CYP2C8 and CYP2C9 alleles are not associated with 
ibuprofen response (ductus closure) in preterm 
neonates. 

Durrmeyer, et al. (2010) (110) Weak 

Diclofenac 
In vitro CYP2C9 is the major enzyme responsible for the 

formation of 4'-hydroxy diclofenac. CYP2C8 
predominantly catalyzes the formation of 5'-hydroxy 
diclofenac and plays a minor role in the formation of 
4'-hydroxy diclofenac. 

Mancy, et al. (1999) (69) 
Bort, et al. (1999) (49) 

Moderate 

In vitro CYP2C8 catalyzes the conversion of diclofenac acyl 
glucuronide to its 4-hydroxy derivative. 

Kumar, et al. (2002) (166) Moderate 

In vitro CYP2C8*4 exhibited decreased catalytic activity in the 
4'-hydroxylation of diclofenac acyl glucuronide. 

Lazarska, et al. (2018) (70) Moderate 

Clinical CYP2C8*3 and CYP2C8*4 are associated Dorado, et al. (2008) (54) Weak 
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with significantly lower metabolism of diclofenac to its 
5-hydroxy-diclofenac metabolite (higher diclofenac/ 5-
hydroxy-diclofenac urinary metabolic ratio). No 
association with 4-hydroxy-diclofenac formation was 
observed.  

Clinical CYP2C8*4 may be associated with increased odds of 
diclofenac hepatotoxity. CYP2C8*3 was not associated 
with hepatotoxicity risk. 

Daly, et al. (2007) (72) Weak 



27 
 

 
SUPPLEMENTAL TABLE S11. LINKAGE DISEQUILIBRIUM BETWEEN CYP2C9*2 AND CYP2C8*3 ACROSS 

POPULATIONS (167) 

Population  N CYP2C9*2 Minor 
Allele Frequency 
 (rs1799853) 

CYP2C8*3 Minor 
Allele Frequency 
(rs11572080 and 
rs10509681) 

R2 D' 

All 2504 4.79% 4.57% 0.8501 0.945       

African Superpopulation 661 0.83% 0.83% 0.8251 0.9083 
Yoruba in Ibadan, Nigeria  108 0.0% 0.0% NA NA 
Luhya in Webuye, Kenya  99 0.0% 0.0% NA NA 
Gambian in Western 
Divisions in the Gambia  

113 0.44% 0.44% 1 1 

Mende in Sierra Leone  85 0.0% 0.0% NA NA 
Esan in Nigeria  99 0.0% 0.0% NA NA 
Americans of African 
Ancestry in SW USA  

61 4.1% 3.28% 0.7932 1 

African Caribbeans in 
Barbados  

96 2.6% 3.13% 0.8289 1 
      

Ad mixed American 
Superpopulation 

347 9.94% 9.94% 0.9367 0.9678 

Mexican Ancestry from Los 
Angeles USA  

64 10.16% 10.16% 1 1 

Puerto Ricans from Puerto 
Rico  

104 13.94% 14.42% 0.9613 1 

Colombians from Medellin, 
Colombia  

94 12.23% 11.7% 0.8548 0.9482 

Peruvians from Lima, Peru  85 2.35% 2.35% 1 1       
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East Asian Superpopulation 504 0.1% 0.1% 1 1 
Han Chinese in Beijing, 
China  

103 0.0% 0.0% NA NA 

Japanese in Tokyo, Japan  104 0.0% 0.0% NA NA 
Southern Han Chinese  105 0.48% 0.48% 1 1 
Chinese Dai in 
Xishuangbanna, China  

93 0.0% 0.0% NA NA 

Kinh in Ho Chi Minh City, 
Vietnam  

99 0.0% 0.0% NA NA 
      

European Superpopulation 503 12.43% 11.83% 0.8228 0.9328 
Utah Residents (CEPH) 
with Northern and Western 
European Ancestry  

99 15.15% 13.13% 0.7715 0.9547 

Toscani in Italia  107 15.42% 13.08% 0.8257 1 
Finnish in Finland  99 8.08% 8.08% 1 1 
British in England and 
Scotland  

91 8.79% 9.34% 0.9355 1 

Iberian Population in Spain  107 14.02% 14.95% 0.7221 0.8824       

South Asian 
Superpopulation 

489 3.48% 2.97% 0.7315 0.9286 

Gujarati Indian from 
Houston, Texas  

103 4.85% 3.88% 0.7919 1 

Punjabi from Lahore, 
Pakistan  

96 5.21% 4.69% 0.8951 1 

Bengali from Bangladesh  86 1.74% 1.74% 0.4366 0.6607 
Sri Lankan Tamil from the 
UK  

102 2.94% 1.96% 0.3638 0.7424 

Indian Telugu from the UK  102 2.45% 2.45% 1 1 
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SUPPLEMENTAL TABLE S12. CLINICAL PHARMACOKINETICS OF SELECTED NSAIDS 

 
NSAID chemical class 
NSAID  Tmax (h) T1/2 (h) Primary route of metabolism 

(% of total dose)  
[oxidative metabolism italicized] 

CYP isoforms involved in 
oxidative metabolism 
(estimated % of metabolism) 

References  

 
Diaryl-substituted pyrazoles 

Celecoxib 2-4 11-16 methyl hydroxylation (>90%)  CYP2C9 (70-90%) 
CYP3A4  
CYP2D6 

(3, 97, 168-171) 

 
Arylpropionic acids 

Ibuprofen 1-2 2-4 
(adults) 
 
1-2 
(children) 
 
23-75 
(premature  
  infants) 

(S)-ibuprofen: 
2-hydroxylation (~30%)  
3-hydroxylation (~45%)  
direct glucuronidation (~15%) 

 
(R)-enantiomer  

chiral inversion to  
     (S)-ibuprofen (60%) 
2-hydroxylation (~10%) 
3-hydroxylation (~20%) 
direct glucuronidation (~10%) 

CYP2C9 (~50%) 
CYP2C8 
CYP2C19 
CYP3A4 
 

(28, 31, 71, 170, 
172, 173) 

Flurbiprofen 1-2 2-6 4′-hydroxylation (~75%) 
direct glucuronidation (~20%) 

CYP2C9 (~50%) 
 

(170, 174) 

Naproxen 1.5-3 12-15 direct glucuronidation (~60%) 
demethylation (~20%)  

CYP2C9 (~20%) 
CYP1A2 
CYP2C8 

(170, 175) 

 
Heteroaryl acids 

Diclofenac 1-2 1-2 direct glucuronidation (~80%) CYP2C9 (<20%) 
CYP2C8 

(49, 69, 166, 
170, 176) 
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4’–hydroxylation 
5-hydroxylation 
(hydroxylation of glucuronide) 

 
(CYP2C8) 

Aceclofenac 1-3 4 4’–hydroxylation (~80%) 
5’–hydroxylation (minor) 
Hydrolysis to diclofenac (~10%) 

CYP2C9 (130, 177) 

 
Enolic acids 

Meloxicam 4-5 15-20 5’–hydroxylation CYP2C9 (40-60%) 
CYP3A4 

(170, 178) 

Piroxicam 2-3 30-86 5’–hydroxylation (~60%)  CYP2C9 (~50%) (170, 179) 
Tenoxicam 2 60 5’–hydroxylation (~60%) 

6’-oxidation (~40%) 
CYP2C9 (~30%) 
 

(170, 179, 180) 

Lornoxicam 2-3 3-5 5’–hydroxylation CYP2C9 (>40%) (108, 170, 181) 
 
Indole and Indene acetic acids 

Indomethacin 0.5-2 4.5-6 demethylation (~50%) 
direct glucuronidation (~20%) 

CYP2C9 (182-184) 

Sulindac 2 (21) 7 (161) reduction to sulfide (active 
metabolite) 
oxidation of active metabolite to 
sulfoxide 

CYP1A2 
CYP3A4 
CYP2C9 (minimal) 

(170, 185, 186) 

 
Alkalones 

Nabumetone 6-92 22-302 oxidation to 6-MNA 
conjugation (glucuronide / sulfate) 

CYP1A2 (formation of 6-MNA) 
CYP2C9 (metabolism of 6-MNA) 

(187) 

 
Aryl-substituted bipyridines 

Etoricoxib 1-2 20 6′-methyl hydroxylation 
1′-N-oxidation 

CYP3A4 
CYP2C9 (<20%) 

(170, 188) 

1Refers to the active metabolite of sulindac, sulindac sulfide 
2Refers to the active metabolite of nabumetone, 6-methoxy-2-naphthylacetic acid (6-MNA)
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FIGURE S1. LINKAGE DISEQUILIBRIUM (LD) ACROSS CYP2C GENES. LD plot was 
generated in Haploview (189) using data from the 1000 Genomes Project (190).  Shading 
indicates the extent of LD, with darker shading indicating a higher r2 value. 
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FIGURE S2. META-ANALYSIS OF THE EFFECT OF CYP2C9 GENOTYPES ON 
CELECOXIB EXPOSURE.  Mean area under the curve (AUC) was extracted from each study 
and compared across genotype groups using a random effects model.  Results are expressed as 
the ratio of mean (ROM) AUC for variant allele carriers to CYP2C9*1/*1 controls. References 
shown in parenthesis. 
 
 



33 
 

 
FIGURE S3. META-ANALYSIS OF THE EFFECT OF CYP2C9 GENOTYPES ON 
IBUPROFEN EXPOSURE.  Mean area under the curve (AUC) was extracted from each study 
and compared across genotype groups using a random effects model.  Results are expressed as 
the ratio of mean (ROM) AUC for variant allele carriers to CYP2C9*1/*1 controls. References 
shown in parenthesis. 
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FIGURE S4. META-ANALYSIS OF THE EFFECT OF CYP2C9 GENOTYPES ON 
MELOXICAM EXPOSURE.  Mean area under the curve (AUC) was extracted from each 
study and compared across genotype groups using a random effects model.  Results are 
expressed as the ratio of mean (ROM) AUC for variant allele carriers to CYP2C9*1/*1 controls. 
1single dose study arm; 2multiple dose study arm. References shown in parenthesis. 
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